Dual-Function Aperture-Coupled Spiral Resonator Antenna with Integrated Impedance Matching Network for Enhanced Radiation Performance
Abstract
This paper proposes the design and implementation of a dual-function aperture-coupled spiral resonator (SR) antenna integrated with a compact impedance matching network (IMN) to achieve enhanced radiation performance and miniaturization. The antenna uses a two-layer FR4 substrate, where the SR is printed on the top layer as the radiating element and excited through a slotted aperture on the ground plane. To maximize power transfer, the IMN, consisting of an inter-digital capacitor (IDC) and a meandered inductor (MI), is embedded into the feed line on the bottom substrate. A comparative study between the conventional SR antenna and the proposed dual-function SR with IMN was conducted. Electromagnetic simulations and experimental measurements demonstrate that the integrated IMN improves the reflection coefficient (S11) by 43.64%, increases radiation efficiency from ~72% to ~87%, and enhances gain from ~3.2 dBi to ~4.8 dBi, while maintaining a compact footprint. The aperture-coupled feeding also contributes to bandwidth enhancement and isolation between the feed and radiating element. This dual-function design effectively resolves the trade-off between miniaturization and radiation performance, demonstrating its applicability for IoT, 5G, and wearable wireless devices.
Keywords
References
W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed., Wiley, 2012.
Y. Zhou, C. -C. Chen, and J. L. Volakis, “Dual band proximity-fed stacked patch antenna for tri-band GPS applications”, IEEE Trans. Antennas Prop., vol. 55, no. 1, pp. 220–223, Jan. 2007. Crossref
G. Xiao dan M. Hu, “Nonuniform Transmission Line Model for Electromagnetic Radiation in Free Space”, Electronics, vol. 12, no. 6, art. no. 1355, Mar. 2023. Crossref
C. Balanis, “Antenna Theory: A Review,” Proceedings of the IEEE”, vol. 80, no. 1, pp. 7-23, Jan. 1992.
C. Pfeiffer, “Fundamental efficiency limits for small metallic antennas”, IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1642–1650, Apr. 2017. Crossref
M. Gustafsson, M. Capek, and K. Schab, “Trade-off between antenna efficiency and Q-factor”, IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2482 – 2493, Apr. 2019. Crossref
D. L. Tavares, A. P. C. Silva, and R. M. S. Cruz, “Antenna systems for IoT applications: a review”, Discover Sustainability, vol. 5, no. 1, pp. 1–19, Jan. 2024.
S. K. Ghosh, R. K. Ghose, and S. Sanyal, “Design strategies and performance of IoT antennas: a comprehensive review”, Discover
Computing, vol. 3, no. 1, pp. 1–23, Jan. 2025. Crossref
R. Gonçalves, P. Pinho, and N. B. Carvalho, “Small antenna design for very compact devices and wearables”, IET Microwaves,
Antennas & Propagation, vol. 11, no. 2, pp. 189–195, Jan. 2017. Crossref
V. S. Vishvaksenan and R. Rajkumar, “Miniaturized wearable antenna with reduced specific absorption rate and enhanced bandwidth”, SN Computer Science, vol. 4, no. 4, pp. 1–12, Jul. 2023.
H. A. Wheeler, “Fundamental limitations of small antennas”, Proceedings of the IRE, vol. 35, no. 12, pp. 1479–1484, Dec. 1947. Crossref
Y. Zhou, C. C. Chen, and J. L. Volakis, “Dual band proximity-fed stacked patch antenna for tri-band GPS applications”, IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 220–223, Jan. 2007. Crossref
D. M. Pozar and B. Kaufman, “Increasing the bandwidth of a microstrip antenna by proximity coupling”, Electron. Lett., vol. 23, no. 8, pp. 368–369, Apr. 1987. Crossref
N. R. Ccoillo-Ramos, N. Aboserwal, Z. Qamar, and J. L. SalazarCerreno, “Improved analytical model for a proximity coupled microstrip patch antenna (PC-MSPA)”, IEEE Trans. Antennas Propag., vol. 69, no. 10, pp. 6244 – 6252, Oct. 2021. Crossref
R. Del-Rio-Ruiz, J.-M. Lopez-Garde, J. Legarda, O. Caytan, and H. Rogier, “A combination of transmission line models as design instruments for electromagnetically coupled microstrip patch antennas in the 2.45 GHz ISM band”, IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 550–555, Jan. 2021. Crossref
M. Grilo, M. H. Seko, F. S. Correra, et al., “Wearable textile patch antenna fed by proximity coupling with increased bandwidth”, Microw. Opt. Technol. Lett., vol. 58, no. 8, pp. 1906–1912, Aug. 2016. Crossref
D. K. Kong, J. Kim, D. Woo, and Y. J. Yoon, “Broadband Modified Proximity Coupled Patch Antenna with Cavity-Backed Configuration”, J. Electromagn. Eng. Sci., vol. 21, no. 1, pp. 8-14, Jan. 2021. Crossref
M. Wahab, Y. P. Saputera, and Y. Wahyu, “Design and realization of Archimedes spiral antenna for Radar detector at 2–18 GHz frequencies”, in 19th Asia-Pacific Conf. on Commun., 2013. Crossref
D. M. Pozar, “A Review of Aperture-Coupled Microstrip Antennas: History, Operation, Development and Applications”, Univ. of Massachusetts Amherst, May 1996.
D. M. Pozar, “Microstrip antenna aperture-coupled to a microstripline”, Electron. Lett., vol. 21, no. 2, pp. 49–50, Jan. 1985.
C. Hertleer, A. Tronquo, H. Rogier, L. Vallozzi, and L. Van Langenhove, “Aperture-coupled patch antenna for integration into wearable textile systems”, IEEE Antennas Wirel. Propag. Lett., vol. 6, pp. 392–395, 2007. Crossref
M. Bugaj and M. Wnuk, “Bandwidth Optimization of Aperture Coupled Stacked Patch Antenna”, in Bandwidth Optimization of Aperture-Coupled Stacked Patch Antenna, InTechOpen, Mar. 2013. Crossref
M. Salucci, G. Oliveri, M. A. Hannan, R. Azaro, dan A. Massa, "Wide-Band Wide-Beam Circularly-Polarized Slot-Coupled Antenna for Wide-Angle Beam Scanning Arrays", Sensors, vol. 23, no. 3, Art. no. 1123, Mar. 2023. Crossref
L. Wen, T. Ji, Y. Huang, T. Cao, Z. Yu, C. Chen, L. Zhu, J. Zhou, and W. Hong, “A Dual-Polarized Aperture-Sharing Phased-Array Antenna for 5G (3.5, 26) GHz Communication”, IEEE Antennas Wirel. Propag., vol. 71, no. 5, pp. 3785–3796, May 2023. Crossref
D. Vuong, N. Ha-Van, and T. T. Son, “Wideband and High-Gain Aperture Coupled Feed Patch Array Antenna for Millimeter-Wave Application”, Adv. Sci. Technol. Eng. Syst., vol. 5, no. 5, pp. 559–562, 2020. Crossref
T. Firmansyah, S. Praptodiyono, R. Wiryadinata, S. Suhendar, and others, “Dual-wideband band pass filter using folded cross stub stepped impedance resonator”, Microw. Opt. Technol. Lett., vol. 59, no. 4. pp. 2929-2934, 2017. Crossref
M. Yunus, A. R. Mahdi, Y. Tan, M. F. Maulana, D. A. Nurmantris, and A. Munir, “Utilization of LC circuit as impedance matching for spiral resonator-based planar antenna”, in Proc. of Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, Apr. 2024, pp. 1–5. Crossref
D. N. Gençoğlan, Ş. Çolak, and M. Palandöken, “Spiral Resonator-Based Frequency Reconfigurable Antenna Design for Sub-6 GHz Applications”, Appl. Sci., vol. 13, no. 15, art. 8719, Aug. 2023. Crossref
A. Raza, R. Keshavarz, E. Dutkiewicz, and N. Shariati, “Compact Multi-Service Antenna for Sensing and Communication Using Reconfigurable Complementary Spiral Resonator”, IEEE Trans. Instrum. Meas., vol. 72, pp. 1–9, 2023. Crossref
G. Giannetti, S. Maddio, and S. Selleri, “A Compact Low-Loss Single-Layer Vialess Diplexer Based on Complementary Microstrip Spiral Resonators for Satellite Communications”, Progress in Electromagnetics Research Letters, vol. 122, pp. 4551, 2024. Crossref
Y. Y. Xu, W. Wu, Q. Shi, T. Shi, and S. Wang, “Design of Miniaturized and Highly Selective Frequency Selective Rasorber Based on Compact Spiral Resonator”, Electron, Lett., vol. 60, no. 21, Oct. 2024. Crossref
Y. Xiong, A. Christy, Y. Dong, A. Comstock, D. Sun, Y. Li, J. F. Cahoon, B. Yang, and W. Zhang, “Combinatorial Split-Ring and Spiral Meta-resonator for Efficient Magnon-Photon Coupling”, Phys. Rev. Appl., vol. 21, no. 3, p. 034034, Mar. 2024. Crossref
M. Yunus, F. Y. Zulkifli, and E. T. Rahardjo, “Radiation characteristics of a novel µ-negative metamaterial spiral resonator antenna at the 2.4 GHz”, IEEE Open J. Antennas Propag., vol. 4, no. 1, pp. 1–11, Mar. 2016. Crossref
D. N. Gençoğlan, Ş. Çolak, and M. Palandöken, “Spiral Resonator-Based Frequency Reconfigurable Antenna Design for Sub-6 GHz Applications”, Appl. Sci., vol. 13, no. 15, art. 8719, Jul. 2023. Crossref
M. Tanabe and H. Nakano, “A low-profile wideband spiral antenna with multiple stopbands”, IET Microw. Antenna Propag., vol. 17, no. 5, pp. 392–402, Mar. 2023. Crossref
T. Saeidi, A. R. Sebak, M. H. Islam, dan A. R. Sebak, “A Miniaturized Full-Ground Dual-Band MIMO Spiral Button Antenna for On-Body and Off-Body Communications”, Sensors, vol. 23, no. 4, art. 1997, Feb. 2023.
G. Giannetti, S. Maddio, and S. Selleri, “A Compact Low-Loss Single-Layer Vialess Diplexer Based on Complementary Microstrip Spiral Resonators for Satellite Communications”, Progress in Electromagnetics Research Letters, vol. 122, pp. 45 51, 2024. Crossref
Y. Li, J. Li, “A Compact Circularly Polarized Planar Spiral Antenna with Wideband Performance”, Wireless Communications and Mobile Computing, 2024.
M. Tan, A. Mohan, dan N. Kumar, “Implantable and Wearable Antennas: Challenges and Design Strategies”, Biomedical Engineering Online, 2024.
A. Gupta, V. Kumar, D. Garg, M. H. Alsharif, and A. Jahid, “Performance Analysis of an Aperture-Coupled THz Antenna for Diagnosing Breast Cancer”, Micromachines, vol. 14, no. 7, art. 1281, Jul. 2023. Crossref
A. DiCarlofelice, G. Tibaldo, G. Addamo, and G. Vecchi, “A Numerical Procedure to Design a UWB Aperture-Coupled Microstrip Antenna”, Appl. Sci., vol. 12, no. 21, art. 11243, Oct. 2022.
H. Baghdadi, Z. El-Ghoul, A. Ouahes, dan S. Safi, “Compact 2 × 2 Circularly Polarized Aperture-Coupled Microstrip Antenna Array for Ka-Band Applications”, Electronics, vol. 10, no. 14, art. 1621, Jul. 2021.
M. T. Yalcinkaya, “The Causal Nexus Between Different Feed Networks and Antenna Performance: A Review”, Sensors, vol. 24, no. 22, 2024.
H. Liu, et al., “A Circularly Polarized Broadband Composite Spiral Antenna Integrating Archimedean and Equiangular Spirals with an Exponentially Tapered Balun”, Sensors, vol. 25, no. 6, art. 1890, Mar. 2025.
Y. Zhou, C. -C. Chen, and J. L. Volakis, “Dual band proximity fed stacked patch antenna for tri-band GPS applications”, IEEE Trans. Antennas Propag., vol. 55, no. 1, pp. 220–223, Jan. 2007. Crossref
A. Munir, M. Yunus, T. Yunita, Y. Tan, B.B. Rijadi, Waryani, M. F. Mulana, J. Haidi, Chairunnisa, M. R. Efendi, “Enhanced Radiation Performances of Aperture Coupled-Fed Spiral Resonator Antenna by Integrating Impedance Matching Network”, in 13th Asia-Pacific Conference on Antennas and Propagation, Christchurch, New Zealand, 3-7 Aug. 2025. Crossref
N. Dib, A. Y. Tamin, and M. M. Dawoud, “A new CAD model of the microstrip interdigital capacitor”, Microw. Opt. Technol. Lett., Vol. 40, no. 2, pp. 121–124, Jan. 2004.
P. S. Sharma and A. K. Sharma, “Design and optimization of interdigital capacitor”, Int. J. Res. Eng. Technol. (IJRET), vol. 4,
no. 6, pp. 283–288, Jun. 2015.
E. Deyo, "A method to calculate inductance in systems of parallel wires", Fort Hays State University, 2017. Crossref
M. A. Rahman, N. Misran, and M. Y. Ismail, “Compact interdigital capacitor-based matching network for 2.45 GHz microstrip antennas”, IEEE Access, vol. 9, pp. 12564–12572, 2021.
J. S. Lee and K. C. Hwang, “Meandered impedance matching network for compact WLAN microstrip antennas”, IET Microw. Antenna Propag., vol. 16, no. 7, pp. 543–550, 2022.
H. T. Nguyen, T. P. Dao, and Y. I. Kim, “Slot-coupled spiral resonator antenna for 2.45 GHz ISM applications”, IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 3, pp. 622–626, 2023.
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 National Research and Innovation Agency

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




















