Web
Analytics

Comparative Performance of Regression and Ensemble Learning Algorithms in Precision Irrigation Forecasting of Sweet Potato

  Muthia Rahmah (1*), Indra Maulana (2)

(1) Institut Prima Bangsa - Indonesia - [ https://scholar.google.com/citations?view_op=list_works&hl=id&user=SyIWbckAAAAJ ] orcid
(2) Institut Prima Bangsa - Indonesia - [ https://scholar.google.com/citations?hl=id&user=8d0pMzQAAAAJ ] orcid
(*) Corresponding Author

Received: September 09, 2025; Revised: October 31, 2025
Accepted: November 26, 2025; Published: December 31, 2025


How to cite (IEEE): M. Rahmah,  and I. Maulana, "Comparative Performance of Regression and Ensemble Learning Algorithms in Precision Irrigation Forecasting of Sweet Potato," Jurnal Elektronika dan Telekomunikasi, vol. 25, no. 2, pp. 102 - 118, Dec. 2025. doi: 10.55981/jet.799

Abstract

Precision irrigation is essential for sustainable agriculture under increasing water scarcity. This study compared regression and ensemble learning algorithms for forecasting irrigation requirements in sweet potato, a crop characterized by high variability in water demand. An Internet of Things (IoT)-based prototype was deployed to collect real-time data on soil moisture, temperature, humidity, light intensity, and atmospheric pressure over 42 hours and 50 minutes (August 4-5, 2025), encompassing two complete diurnal cycles at 10-minute intervals and yielding 243 temporal observations. Following preprocessing and feature engineering with lag-based temporal features, the final dataset comprised 240 samples (192 training, 48 testing) using chronological time-based splitting to prevent data leakage. Five algorithms, Support Vector Regression (SVR), AdaBoost, Extreme Gradient Boosting (XGBoost), Random Forest Regressor (RFR), and CatBoost, were evaluated under default and hyperparameter-tuned configurations using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²) as evaluation metrics. Tuned Random Forest achieved superior performance (R² = 0.9802, RMSE = 9.58, MAE = 6.08), followed by default Random Forest (R² = 0.9786) and default CatBoost (R² = 0.9687). XGBoost demonstrated strong performance (R² = 0.9670 tuned) but exhibited overfitting tendencies with near-perfect training scores. SVR improved substantially after tuning (R² = 0.328 to 0.797), although it remained inferior to ensemble methods. Overall, ensemble methods, particularly XGBoost and Random Forest, demonstrated superior efficacy for sweet potato irrigation forecasting. These findings underscore the potential of IoT-integrated machine learning to enhance water-use efficiency and support sustainable smart farming practices.


  http://dx.doi.org/10.55981/jet.799

Keywords


Ensemble learning, IoT, Machine learning; Precision irrigation; Regression; Sweet potato

Full Text:

  PDF

References


S. Violino et al., “Smart agricultural technology a data-driven bibliometric review on precision irrigation,” Smart Agric. Technol., vol. 5, no. September, p. 100320, 2023, doi: 10.1016/j.atech.2023.100320. Crossref

G. Singh and S. Sharma, “Enhancing precision agriculture through cloud based transformative crop recommendation model,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-93417-3. Crossref

R. E. Putri, N. U. Lestari, Ifmalinda, F. Arlius, I. Putri, and A. Hasan, “Monitoring and controlling system of smart mini greenhouse based on internet of things (iot) for spinach plant (amaranthus sp.),” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 1, pp. 131–136, 2024, doi: 10.18517/ijaseit.14.1.18408. Crossref

P. Nuangpirom, S. Pitjamit, W. Pheerathamrongrat, W. Nakkiew, and P. Jewpanya, “Estimation of microbial load in ganoderma lucidum using a solar-electric hybrid dryer enhanced by machine learning and iot,” Smart Agric. Technol., vol. 11, 2025, doi: 10.1016/j.atech.2025.100977. Crossref

A. Barriga, J. A. Barriga, A. Lozano-Tello, M. J. Moñino, and P. J. Clemente, “IoT and machine learning for the forecasting of physiological parameters of crop leaves,” IEEE Access, vol. 13, pp. 175161–175178, 2025, doi: 10.1109/ACCESS.2025.3615717. Crossref

M. Nawaz and M. I. K. Babar, “IoT and ai: a panacea for climate change-resilient smart agriculture,” Discov. Appl. Sci., vol. 6, no. 10, 2024, doi: 10.1007/s42452-024-06228-y. Crossref

V. Y. Chandrappa, B. Ray, N. Ashwatha, and P. Shrestha, “Spatiotemporal modeling to predict soil moisture for sustainable smart irrigation,” Internet of Things (Netherlands), vol. 21, no. December 2022, p. 100671, 2023, doi: 10.1016/j.iot.2022.100671. Crossref

T. Alahmad, M. Neményi, A. V. Széles, N. Ali, O. Hijazi, and A. Nyéki, “Spatiotemporal prediction of soil moisture content at various depths in three soil types using machine learning algorithms,” Front. Soil Sci., vol. 5, 2025, doi: 10.3389/fsoil.2025.1612908. Crossref

J. A. Nava-Pintor et al., “Development and evaluation of solar radiation sensor using cost-effective light sensors and machine learning techniques,” Technologies, vol. 13, no. 5, 2025, doi: 10.3390/technologies13050182. Crossref

A. Imade, O. Soumaya, E. M. yassine, and A. Mohamed, “Machine learning approaches applied in smart agriculture for the prediction of agricultural yields,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 10, pp. 832–843, 2024, doi: 10.14569/IJACSA.2024.0151085. Crossref

Y. Arafa et al., “Improving the spatial deployment of the soil moisture sensors in smart irrigation systems using gis,” Cogent Food Agric., vol. 10, no. 1, p., 2024, doi: 10.1080/23311932.2024.2361124. Crossref

S. A. S. V. N. Elakkiya, “Yield prediction , pest and disease diagnosis , soil fertility mapping , precision irrigation scheduling , and food quality assessment using machine learning and deep learning algorithms,” Discov. Food, 2025, doi: 10.1007/s44187-025-00338-1. Crossref

M. Awais et al., “AI and machine learning for soil analysis : an assessment of sustainable agricultural practices,” Bioresour. Bioprocess., 2023, doi: 10.1186/s40643-023-00710-y. Crossref

R. P. Shete, A. Shekhar C, Y. V Mahajan, A. M. Bongale, and D. S. Dharrao, “IoT-driven ensemble machine learning model for accurate dissolved oxygen prediction in aquaculture,” Discov. Internet Things, vol. 5, no. 1, 2025, doi: 10.1007/s43926-025-00201-w. Crossref

N. G. Rezk, A. F. Attia, M. A. El-Rashidy, A. EL-SAYED, and E. E. D. Hemdan, “An efficient iot-based crop damage prediction framework in smart agricultural systems,” Sci. Rep., vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-12921-8. Crossref

V. N. Nguyen, N. Chung, G. N. Balaji, K. Rudzki, and A. T. Hoang, “Internet of things-driven approach integrated with explainable machine learning models for ship fuel consumption prediction,” Alexandria Eng. J., vol. 118, pp. 664–680, 2025, doi: 10.1016/j.aej.2025.01.067. Crossref

H. Dong, J. Dong, and S. Sun, “Crop water stress detection based on uav remote sensing systems,” vol. 303, no. September, 2024. Crossref

J. Wanyama et al., “Smart agricultural technology a systematic review of fourth industrial revolution technologies in smart irrigation : constraints , opportunities , and future prospects for sub-saharan africa,” Smart Agric. Technol., vol. 7, no. February, p. 100412, 2024, doi: 10.1016/j.atech.2024.100412. Crossref

A. Martelli, D. Rapinesi, L. Verdi, I. I. M. Donati, A. Dalla Marta, and F. Altobelli, “Smart irrigation for management of processing tomato: a machine learning approach,” 2024, doi: 10.1007/s00271-024-00993-9. Crossref

B. Agustirandi, I. Inayah, N. S. Aminah, and M. Budiman, “Analysis comparison, calibration, and application of low-cost soil moisture in smart agriculture based on internet of things,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 22, no. 5, pp. 1221–1230, 2024, doi: 10.12928/TELKOMNIKA.v22i5.25703. Crossref

S. Z. Islam et al., “Sustainable smart irrigation system (sis) using solar pv with rainwater harvesting technique for indoor plants,” 2025, doi: 10.1371/journal.pone.0316911. Crossref

E. A. Abioye et al., “Precision irrigation management using machine learning and digital farming solutions,” pp. 70–103, 2022. Crossref

D. Vallejo-g, M. Osorio, and C. A. Hincapi, “Smart irrigation systems in agriculture : a systematic review,” pp. 1–25, 2023. Crossref

S. S. Fakhrulddin, V. D. Bhatt, and S. K. Gharghan, “Intelligent air pollution prediction algorithm-based optimized random forest regression for reducing asthmatic attacks,” J. Air Pollut. Heal., vol. 10, no. 1, pp. 1–18, 2025, doi: 10.18502/japh.v10i1.18091. Crossref

C. Banciu, A. Florea, and R. Bogdan, “Monitoring and predicting air quality with iot devices,” Processes, vol. 12, no. 9, 2024, doi: 10.3390/pr12091961. Crossref

J. Fondaj, M. Hamiti, S. Krrabaj, X. Zenuni, and J. Ajdari, “Comparison of predictive algorithms for iot smart agriculture sensor data,” Int. J. Interact. Mob. Technol., vol. 17, no. 21, pp. 65–78, 2023, doi: 10.3991/ijim.v17i21.44143. Crossref

W. Noonpakdee and S. Danrangab, “Predicting dew point temperatures: a machine learning approach with shap explanations,” ASEAN J. Sci. Technol. Reports, vol. 28, no. 2, 2025, doi: 10.55164/ajstr.v28i2.255728. Crossref

P. Karampakakis, D. Ioakeimidou, P. Chatzimisios, and K. A. Tsintotas, “A web-based application for smart city data analysis and visualization,” Futur. Internet, vol. 17, no. 5, 2025, doi: 10.3390/fi17050217. Crossref

J. Konecny et al., “Efficient soil temperature profile estimation for thermoelectric powered sensors,” Sensors, vol. 25, no. 13, 2025, doi: 10.3390/s25134232. Crossref

A. Morchid et al., “IoT-enabled smart agriculture for improving water management: a smart irrigation control using embedded systems and server-sent events,” 2025, doi: 10.1016/j.sciaf.2024.e02527. Crossref


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.