Web
Analytics

Fabrication of Quartz Crystal Microbalance Coated with GO/PVC Nanofiber for Benzene Detection as Tuberculosis Biomarker

  Doni Bowo Nugroho (1*), Nada Nadzira Ayasha Kamal (2), Rosita Wati (3), Nova Resfita (4)

(1) Institut Teknologi Sumatera - Indonesia - [ https://orcid.org/0000-0003-3249-823X ] orcid
(2) Institut Teknologi Sumatera - Indonesia
(3) Institut Teknologi Sumatera - Indonesia
(4) Institut Teknologi Sumatera - Indonesia
(*) Corresponding Author

Received: July 06, 2025; Revised: September 09, 2025
Accepted: October 24, 2025; Published: December 31, 2025


How to cite (IEEE): D. B. Nugroho, N. N. Kamal, R. Wati,  and N. Resfita, "Fabrication of Quartz Crystal Microbalance Coated with GO/PVC Nanofiber for Benzene Detection as Tuberculosis Biomarker," Jurnal Elektronika dan Telekomunikasi, vol. 25, no. 2, pp. 86 - 92, Dec. 2025. doi: 10.55981/jet.765

Abstract

Tuberculosis (TB) is a highly contagious illness and a major contributor to global mortality, with over 1.5 million deaths reported annually. TB is caused by Mycobacterium tuberculosis (Mtb), which is often difficult to diagnose in the early stages of infection. Existing diagnostic methods are limited by long processing times, high costs, and suboptimal sensitivity. Therefore, this study aimed to develop a Quartz Crystal Microbalance (QCM)-based biosensor employing polyvinyl chloride (PVC) nanofibers coated with graphene oxide (GO) for rapid detection of volatile TB biomarkers, particularly benzene. The sensing platform utilized a 10 MHz AT-cut silver electrode QCM coated with electrospun PVC nanofibers, followed by GO deposition via immersion. Scanning Electron Microscopy (SEM) showed uniform nanofibers with diameters increasing from 183 ± 54 nm to 348 ± 50 nm after GO coating, while FTIR confirmed the presence of GO functional groups. Sensor evaluation revealed a clear and concentration-dependent frequency shift, with a sensitivity of 1.88 Hz·L/mg, a strong linear correlation (R² = 0.99) across 1.18–23.68 mg/L, and a fast response time of 71 seconds. The limits of detection and quantification were determined to be 0.88 mg/L and 2.66 mg/L, respectively. Adsorption followed the Langmuir isotherm model, indicating monolayer uptake. These results demonstrate that the GO/PVC nanofiber-coated QCM offers a promising, low-cost, and sensitive approach for TB biomarker detection in breath analysis.

  http://dx.doi.org/10.55981/jet.765

Keywords


benzene; graphene oxide; polyvinyl chloride; quartz crystal microbalance; tuberculosis

Full Text:

  PDF

References


D. Goletti, G. Meintjes, B. B. Andrade, A. Zumla, and S. Shan Lee, “Insights from the 2024 who global tuberculosis report – more comprehensive action, innovation, and investments required for achieving WHO end TB goals,” Int. J. Infect. Dis., vol. 150, 2025, Art. no. 107325, doi: 10.1016/j.ijid.2024.107325. Crossref

J. Huang, Q. He, L. Huang, L. Liu, P. Yang, and M. Chen, “Discovering the link between IL12RB1 gene polymorphisms and tuberculosis susceptibility: A comprehensive meta-analysis,” Front. Public Heal., vol. 12, Jan. 2024, Art. no. 1249880, doi: 10.3389/fpubh.2024.1249880. Crossref

J. Yang, L. Zhang, W. Qiao, and Y. Luo, “Mycobacterium tuberculosis: Pathogenesis and therapeutic targets,” MedComm, vol. 4, no. 5, 2023, Art. no. e353, doi: 10.1002/mco2.353. Crossref

H. Joshi, D. Kandari, S. S. Maitra, and R. Bhatnagar, “Biosensors for the detection of Mycobacterium tuberculosis: A comprehensive overview,” Crit. Rev. Microbiol., vol. 48, no. 6, pp. 784–812, 2022, doi: 10.1080/1040841X.2022.2035314. Crossref

F. Estaji, A. Kamali, and M. Keikha, “Strengthening the global response to tuberculosis: Insights from the 2024 who global TB report,” J. Clin. Tuberc. Other Mycobact. Dis., vol. 39, 2025, Art. no. 100522, doi: 10.1016/j.jctube.2025.100522. Crossref

N. Mohammadnabi et al., “Mycobacterium tuberculosis: The mechanism of pathogenicity, immune responses, and diagnostic challenges.,” J. Clin. Lab. Anal., vol. 38, Dec. 2024, Art. no. e25122, doi: 10.1002/jcla.25122. Crossref

M. Phillips et al., “Volatile biomarkers of pulmonary tuberculosis in the breath,” Tuberculosis, vol. 87, no. 1, pp. 44–52, 2007, doi: 10.1016/j.tube.2006.03.004. Crossref

A. M. I. Saktiawati, D. D. Putera, A. Setyawan, Y. Mahendradhata, and T. S. van der Werf, “Diagnosis of tuberculosis through breath test: A systematic review,” EBioMedicine, vol. 46, pp. 202–214, 2019, doi: 10.1016/j.ebiom.2019.07.056. Crossref

M. Phillips et al., “Breath biomarkers of active pulmonary tuberculosis,” Tuberculosis, vol. 90, no. 2, pp. 145–151, 2010, doi: 10.1016/j.tube.2010.01.003. Crossref

S. K. Srivastava, C. J. M. Van Rijn, and M. A. Jongsma, “Biosensor-based detection of tuberculosis,” RSC Adv., vol. 6, no. 22, pp. 17759–17771, 2016, doi: 10.1039/c5ra15269k. Crossref

Y. Zhao, Z. Li, Y. Xia, Q. Jia, L. Zhao, and R. Maboudia, “Advances in micro- and nano-scale resonant mass-sensitive gas sensors: mechanisms, materials, functionalization and applications,” Sensors Actuators B. Chem., vol. 431, Feb. 2025, Art. no. 137415, doi: 10.1016/j.snb.2025.137415. Crossref

W. Huang et al., “Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers,” RSC Adv., vol. 3, no. 45, 2013, Art. no. 22994, doi: 10.1039/c3ra44671a. Crossref

G. Sauerbrey, “Verwendung von schwingquarzen zur wagungdiinner schichten und zur mikrowagung,” (in German), Zeitschrift fur. Phys., vol. 155, no. 2, pp. 206–222, 1959, doi: 10.1007/BF01337937. Crossref

D. Johannsmann, The Quartz Crystal Microbalance in Soft Matter Research. Switzerland: Springer International Publishing, 2015. doi: 10.1007/978-3-319-07836-6. Crossref

A. Mirmohseni and K. Rostamizadeh, “Quartz crystal nanobalance in conjunction with principal component analysis for identification of volatile organic compounds,” Sensors, vol. 6, pp. 324–334, 2006, doi: 10.3390/s6040324. Crossref

A. Rianjanu et al., “Polyacrylonitrile nanofiber-based quartz crystal microbalance for sensitive detection of safrole,” Sensors (Switzerland), vol. 18, no. 4, 2018, Art. no. 1150, doi: 10.3390/s18041150. Crossref

A. Rianjanu, S. A. Hasanah, D. B. Nugroho, A. Kusumaatmaja, R. Roto, and K. Triyana, “Polyvinyl acetate film-based quartz crystal microbalance for the detection of benzene, toluene, and xylene vapors in air,” Chemosensors, vol. 7, no. 2, 2019, Art. no. 20, doi: 10.3390/chemosensors7020020. Crossref

T. Julian, S. N. Hidayat, A. Rianjanu, A. B. Dharmawan, H. S. Wasisto, and K. Triyana, “Intelligent mobile electronic nose system comprising a hybrid polymer-functionalized quartz crystal microbalance sensor array,” ACS Omega, vol. 5, no. 45, pp. 29492–29503, 2020, doi: 10.1021/acsomega.0c04433. Crossref

A. Iyer, V. Mitevska, J. Samuelson, S. Campbell, and V. R. Bhethanabotla, “Polymer–plasticizer coatings for BTEX detection using quartz crystal microbalance,” Sensors, vol. 21, 2021, Art. no. 5667, doi: 10.3390/s21165667. Crossref

A. Das and R. Manjunatha, “Optimization of qcm sensor for btx detection,” in Proc. 2023 IEEE 9th Int. Conf. Smart Instrumentation, Meas. Appl., 2023, pp. 225–229. doi: 10.1109/ICSIMA59853.2023.10373452. Crossref

N. Alanazi, M. Almutairi, and A. N. Alodhayb, “A review of quartz crystal microbalance for chemical and biological sensing applications,” Sens. Imaging, vol. 24, no. 1, 2023, Art. no. 10, doi: 10.1007/s11220-023-00413-w. Crossref

A. Javed, S. R. Abbas, M. U. Hashmi, N. U. A. Babar, and I. Hussain, “Graphene oxide based electrochemical genosensor for label free detection of Mycobacterium tuberculosis from raw clinical samples,” Int. J. Nanomedicine, vol. 16, pp. 7339–7352, 2021, doi: 10.2147/IJN.S326480. Crossref

E. N. Azizah et al., “Comparative analysis of charge recombination dynamics in dye-sensitized solar cells with different counter electrodes,” J. Elektron. dan Telekomun., vol. 25, no. 1, pp. 1–8, Aug. 2025, doi: 10.55981/jet.703. Crossref

L. Q. Pham, M. V. Uspenskaya, R. O. Olekhnovich, and R. A. O. Bernal, “A review on electrospun PVC nanofibers: Fabrication, properties, and application,” Fibers, vol. 9, no. 2, 2021, Art. no. 12, doi: 10.3390/fib9020012. Crossref

N. S. Chong, S. Abdulramoni, D. Patterson, and H. Brown, “Releases of fire-derived contaminants from polymer pipes made of polyvinyl chloride,” vol. 7, 2019, Art. no. 57, doi: 10.3390/toxics7040057. Crossref

A. Zulfi, S. Hartati, S. Nur’aini, A. Noviyanto, and M. Nasir, “Electrospun nanofibers from waste polyvinyl chloride loaded silver and titanium dioxide for water treatment applications,” ACS Omega, vol. 8, no. 26, pp. 23622c23632, 2023, doi: 10.1021/acsomega.3c01632. Crossref

G. Grause, S. Hirahashi, H. Toyoda, T. Kameda, and T. Yoshioka, “Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers,” J. Mater. Cycles Waste Manag., vol. 19, no. 2, pp. 612–622, 2017, doi: 10.1007/s10163-015-0457-9. Crossref

D. B. Nugroho, A. Rianjanu, K. Triyana, A. Kusumaatmaja, and R. Roto, “Quartz crystal microbalance-coated cellulose acetate nanofibers overlaid with chitosan for detection of acetic anhydride vapor,” Results Phys., vol. 15, 2019, Art. no. 102680, doi: 10.1016/j.rinp.2019.102680. Crossref

A. D. Oktaviani and R. V. Manurung, “Screen-printed carbon electrode modified GNPs/ZnO for electrochemical biosensing,” J. Elektron. dan Telekomun., vol. 24, no. 1, pp. 38–45, 2024, doi: 10.55981/jet.593. Crossref

A. Rianjanu, K. Triyana, D. B. Nugroho, A. Kusumaatmaja, and R. Roto, “Electrospun polyvinyl acetate nanofiber modified quartz crystal microbalance for detection of primary alcohol vapor,” Sensors Actuators, A Phys., vol. 301, 2020, Art. no. 111742, doi: 10.1016/j.sna.2019.111742. Crossref

S. M. Nokandeh et al., “Nanoporous structures-based biosensors for environmental and biomedical diagnostics: Advancements, opportunities, and challenges,” Coord. Chem. Rev., vol. 522, 2025, Art. no. 216245, doi: 10.1016/j.ccr.2024.216245. Crossref

H. Moustafa, M. Morsy, M. A. Ateia, and F. M. Abdel-Haleem, “Ultrafast response humidity sensors based on polyvinyl chloride/graphene oxide nanocomposites for intelligent food packaging,” Sensors Actuators, A Phys., vol. 331, 2021, Art. no. 112918, doi: 10.1016/j.sna.2021.112918. Crossref

Faiza, A. Khattak, A. A. Alahmadi, H. Ishida, and N. Ullah, “Improved PVC/ZnO nanocomposite insulation for high voltage and high temperature applications,” Sci. Rep., vol. 13, 2023, Art. no. 7235, doi: 10.1038/s41598-023-31473-3. Crossref

K. Deshmukh, S. M. Khatake, and G. M. Joshi, “Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites,” J. Polym. Res., vol. 20, no. 11, 2013, Art. no. 286, doi: 10.1007/s10965-013-0286-2. Crossref

B. Çobanoglu, F. N. Parin, and K. Yildirim, “Production and characterization of n-halamine based polyvinyl chloride (PVC) nanowebs,” Tekst. ve Konfeksiyon, vol. 31, no. 3, pp. 147–155, 2021, doi: 10.32710/tekstilvekonfeksiyon.717601. Crossref

V. Brusko, A. Khannanov, A. Rakhmatullin, and A. M. Dimiev, “Unraveling the infrared spectrum of graphene oxide,” Carbon, vol. 229, 2024, Art. no. 119507, doi: 10.1016/j.carbon.2024.119507. Crossref

A. Khan et al., “The effect of diverse metal oxides in graphene composites on the adsorption isotherm of gaseous benzene,” Environ. Res., vol. 172, pp. 367–374, 2019, doi: 10.1016/j.envres.2019.01.050. Crossref

L. Yu et al., “Adsorption of VOCs on reduced graphene oxide,” J. Environ. Sci. (China), vol. 67, pp. 171–178, 2018, doi: 10.1016/j.jes.2017.08.022. Crossref

P.-P. Zhou and R.-Q. Zhang, “Physisorption of benzene derivatives on graphene: Critical roles of steric and stereoelectronic effects of the substituent.,” Phys. Chem. Chem. Phys., vol. 17, no. 18, pp. 12185–12193, May 2015, doi: 10.1039/c4cp05973e. Crossref

A. Das, R. Manjunatha, K. N. Kumar, D. De, and R. Bandyopadhyay, “Fabrication of surface functionalized QCM sensor for BTX detection at ambient conditions,” Talanta, vol. 283, 2025, Art. no. 127081, doi: 10.1016/j.talanta.2024.127081. Crossref

A. Bayram, C. Özbek, M. Şenel, and S. Okur, “CO gas sorption properties of ferrocene branched chitosan derivatives,” Sensors Actuators B Chem., vol. 241, pp. 308–313, 2017, doi: https://doi.org/10.1016/j.snb.2016.08.175. Crossref


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.