Web
Analytics

Implementation of Internet of Things-Based Autofeeder to Maintain Koi Pond Water Quality

  Helmy Helmy (1*), Suko Tyas Pernanda (2), Septiantar Tebe Nursaputro (3), Mona Inayah Pratiwi (4), Brian Rahmaditya (5), Clara Silvia Anggreini (6)

(1) Politeknik Negeri Semarang - Indonesia
(2) Politeknik Negeri Semarang - Indonesia
(3) Politeknik Negeri Semarang - Indonesia
(4) Politeknik Negeri Semarang - Indonesia
(5) Politeknik Negeri Semarang - Indonesia
(6) Politeknik Negeri Semarang - Indonesia
(*) Corresponding Author

Received: December 12, 2024; Revised: August 04, 2025
Accepted: August 22, 2025; Published: December 31, 2025


How to cite (IEEE): H. Helmy, S. T. Pernanda, S. T. Nursaputro, M. I. Pratiwi, B. Rahmaditya,  and C. S. Anggreini, "Implementation of Internet of Things-Based Autofeeder to Maintain Koi Pond Water Quality," Jurnal Elektronika dan Telekomunikasi, vol. 25, no. 2, pp. 71 - 79, Dec. 2025. doi: 10.55981/jet.717

Abstract

Koi fish farming requires careful monitoring of water temperature and pH to prevent adverse impacts on the fish. This study presents a prototype IoT-based autofeeder that integrates real-time water quality monitoring and automatic feeding, controllable via both an Android application and local device buttons. The system allows users to configure feeding schedules, feed throw levels, and durations, as well as set pH thresholds. When the pH exceeds the safe range, the system automatically stops feeding and sends notifications, enabling the user to inspect and maintain pond water quality. The findings demonstrate that the dispensing level significantly influences the feed-throwing distance; higher dispensing levels result in longer distances. Small-sized feed (S) consistently produced the highest output, followed by medium-sized (M) and large-sized (L). Increasing the feeding duration enhanced the weight of the released feed. Additionally, the average delay in sensor data transmission to the database was recorded at 5.48 seconds. The data loss rate during the testing period was 1.72%, which is considered acceptable and does not adversely affect system operations. The data transmission system demonstrated good and stable performance with relatively low data loss.


  http://dx.doi.org/10.55981/jet.717

Keywords


koi fish, autofeeder, temperature sensor, pH sensor.

Full Text:

  PDF

References


A. K. Nurdina, A. P. Sasmito, and N. Vendyansyah, “Implementation of an Internet of Things (IoT)–based monitoring and control system for koi fry care using a web platform,” (in Indonesian), Jurnal Mahasiswa Teknik Informatika, vol. 2, no. 2, pp. 1115-1122, 2022, doi: https://doi.org/10.36040/jati.v6i2.5349. Crossref

A. Hendriana, F. Ridwansyah, A. Iskandar, A. S. Munawar, and D. Lugina, “Koi fish (Cyprinus carpio) breeding methods for producing high-quality fry at Mizumi Koi Farm, Sukabumi Regency, West Java,” (in Indonesian), Jurnal Penelitian Pertanian Terapan, vol. 2, pp. 17–26, 2021, doi: 10.25181/peranan.v2i1.2203. Crossref

B. D. T. Bodaragama, E. H. A. D. M. Miyurangana, Y. T. W. S. L. Jayakod, D. M. H. D. Vipulasiri, U. U. S. Rajapaksha, and J. Krishara, “IoT-based solution for fish disease detection and controlling a fish tank through a mobile application,” in 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), Apr. 2024, pp. 1–6. doi: 10.1109/I2CT61223.2024.10543840. Crossref

S. P. Sari, J. M. Amelia, and G. I. Setiabudi, “Effect of different temperatures on the growth rate and survival of koi fish (Cyprinus carpio) fry,” (in Indonesian), Jurnal Perikanan Unram, vol. 12, no. 3, pp. 346–354, Sep. 2022, doi: 10.29303/jp.v12i3.328. Crossref

A. K. P. M. Daud, N. A. Sulaiman, Y. W. M. Yusof, and M. Kassim, “An IoT-based smart aquarium monitoring system,” in Symposium on Computer Applications & Industrial Electronics (ISCAIE), Apr. 2020, pp. 277–282. doi: 10.1109/ISCAIE47305.2020.9108823. Crossref

S. Indriyanto, F. Titan Syifa, and H. Aditya Permana, “Water temperature monitoring system in koi fish fry ponds based on the Internet of Things,” (in Indonesian) TELKA, vol. 6, no. 1, pp. 10–19, 2020. Crossref

P. M. Jacob, J. Moni, A. Joy, G. Gopan, A. Abraham, and A. O, “An internet of things-based mobile application for remote monitoring and management of aquariums,” in 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST), Apr. 2024, pp. 1–6. doi: 10.1109/ICTEST60614.2024.10576150. Crossref

N. W. Sari, I. Lukistyowati, and N. Aryani, “Effect of administering temulawak (Curcuma xanthorrhiza Roxb.) on the survival of common carp (Cyprinus carpio L.) after infection with Aeromonas hydrophila,” (in Indonesian), Jurnal Perikanan dan Kelautan, vol. 17, no. 2, 2012. Crossref

K. Jadhav, G. Vaidya, A. Mali, V. Bankar, M. Mhetre, and J. Gaikwad, “IoT-based automated fish feeder,” in 2020 International Conference on Industry 4.0 Technology (I4Tech), Feb. 2020, pp. 90–93. doi: 10.1109/I4Tech48345.2020.9102682. Crossref

N. H. Harani, A. S. Sadiah, and A. Nurbasari, “Smart fish feeder using Arduino Uno with fuzzy logic controller,” in 2019 5th International Conference on Computing Engineering and Design (ICCED), Apr. 2019, pp. 1–6. doi: 10.1109/ICCED46541.2019.9161114. Crossref

N. Busaeri, N. Hiron, A. Andang, and I. Taufiqurrahman, “Design and prototyping the automatic fish feeder machine for low energy,” in 2019 International Conference on Sustainable Engineering and Creative Computing (ICSECC), Aug. 2019, pp. 9–13. doi: 10.1109/ICSECC.2019.8907077. Crossref

R. D. Clemente, “Development of online hatchery monitoring and feeding management system for Nile tilapia,” in 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM ), Nov. 2019, pp. 1–4. doi: 10.1109/HNICEM48295.2019.9072727. Crossref

A. K. Pasha Mohd Daud, N. A. Sulaiman, Y. W. Mohamad Yusof, and M. Kassim, “An IoT-based smart aquarium monitoring system,” in Symposium on Computer Applications & Industrial Electronics (ISCAIE), Apr. 2020, pp. 277–282. doi: 10.1109/ISCAIE47305.2020.9108823. Crossref

P. M. Jacob, J. Moni, A. Joy, G. Gopan, A. Abraham, and A. O, “An internet of things-based mobile application for remote monitoring and management of aquariums,” in International Conference on Trends in Engineering Systems and Technologies (ICTEST), Apr. 2024, pp. 1–6. doi: 10.1109/ICTEST60614.2024.10576150. Crossref

B. D. T. Bodaragama, E. H. A. D. M. Miyurangana, Y. T. W. S. L. Jayakod, D. M. H. D. Vipulasiri, U. U. S. Rajapaksha, and J. Krishara, “IoT-based solution for fish disease detection and controlling a fish tank through a mobile application,” in International Conference for Convergence in Technology (I2CT), Apr. 2024, pp. 1–6. doi: 10.1109/I2CT61223.2024.10543840. Crossref

J. John and M. P. R, “Automated fish feed detection in IoT based aquaponics system,” in 2021 8th International Conference on Smart Computing and Communications (ICSCC), Jul. 2021, pp. 286–290. doi: 10.1109/ICSCC51209.2021.9528186. Crossref

A. Akhriana, I. Intan, N. Tamsir, N. Nirwana, R. W. Rahmi, and R. Rahmadani, “Microcontroller application in feeding fish using an Android mobile,” in International Conference on Cybernetics and Intelligent Systems (ICORIS), Oct. 2021, pp. 1–6. doi: 10.1109/ICORIS52787.2021.9649453. Crossref

P. Ginanjar, S. Opipah, D. Rusmana, Muhlas, M. R. Effendi, and E. A. Z. Hamidi, “Prototype smart fish farm in koi fish farming,” in 2021 7th International Conference on Wireless and Telematics (ICWT), Aug. 2021, pp. 1–6. doi: 10.1109/ICWT52862.2021.9678208. Crossref

U. M. R. Herdian, H. H. Nuha, and R. G. Utomo, “Smart fish feeder design and analysis at Sekemala Integrated Farming (SEINFarm),” in 2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), Dec. 2022, pp. 53–58. doi: 10.1109/ICICyTA57421.2022.10038102. Crossref

R. G. Baldovino, F. N. Magallanes, E. J. C. Santos, K. D. Conti, and P. D. L. Sia, “Smart IoT-based feeder system for koi fish (Cyprinus rubrofuscus) aquaculture,” in 2024 9th International Conference on Mechatronics Engineering (ICOM), Aug. 2024, pp. 240–244. doi: 10.1109/ICOM61675.2024.10652414. Crossref

M. Ibrahim, H. Zakaria, and E. W. Xian, “Pet food autofeeder by using Arduino,” IOP Conf Ser Mater Sci Eng, vol. 670, no. 1, p. 012069, Nov. 2019, doi: 10.1088/1757-899X/670/1/012069. Crossref

S. J. Yeoh, F. S. Taip, J. Bin Endan, R. A. Talib, and M. K. S. Mazlina, “Development of automatic feeding machine for aquaculture industry,” Pertanika J Sci Technol, vol. 18, pp. 105–110, 2010, [Online]. Available: https://api.semanticscholar.org/CorpusID:54074167. Crossref

S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for future technology enhancement: a review,” J Big Data, vol. 6, no. 1, p. 111, Dec. 2019, doi: 10.1186/s40537-019-0268-2. Crossref

W. Wilianto and A. Kurniawan, “History, working principles, and benefits of the Internet of Things,” (in Indonesian), Matrix : Jurnal Manajemen Teknologi dan Informatika, vol. 8, no. 2, p. 36, Jul. 2018, doi: 10.31940/matrix.v8i2.818. Crossref

D. Desmira, D. Ariwibowo, and R. Pratama, “Application of pH sensors in the electrolyzer area at PT Sulfindo Adiusaha,” (in Indonesian), Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 5, no. 1, Mar. 2018. Crossref

G. Marques, D. Aleixo, and R. Pitarma, “Enhanced hydroponic agriculture environmental monitoring: an internet of things approach,” 2019, pp. 658–669. doi: 10.1007/978-3-030-22744-9_51. Crossref

D. R. Wati and W. Sholihah, “pH and nutrient controller for lettuce plants in an NFT hydroponic system based on Arduino,” (in Indonesian), MULTINETICS, vol. 7, no. 1, pp. 12–20, Mar. 2021, doi: 10.32722/multinetics.v7i1.3504. Crossref

K. O. Flores, I. M. Butaslac, J. E. M. Gonzales, S. M. G. Dumlao, and R. S. J. Reyes, “Precision agriculture monitoring system using wireless sensor network and Raspberry Pi local server,” in 2016 IEEE Region 10 Conference (TENCON), Nov. 2016, pp. 3018–3021. doi: 10.1109/TENCON.2016.7848600. Crossref

A. F. Y. Saputro and D. A. Prasetyo, “Rancang bangun thermopen sebagai pengukur suhu menggunakan sensor ds18b20 dalam internet of things ,” Emitor: Jurnal Teknik Elektro, vol. 22, no. 1, pp. 26–33, Mar. 2022, doi: 10.23917/emitor.v22i1.14928. Crossref

M. Imam, E. Apriaskar, and Djuniadi, “Design and construction of a thermopen as a temperature measurement device using the DS18B20 sensor in the Internet of Things,” (in Indonesian), 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:213556203. Crossref

Mrs. K. Anusha, “Internet of Things (IoT) based home automation using ESP32,” Int J Res Appl Sci Eng Technol, vol. 12, no. 5, pp. 1672–1676, May 2024, doi: 10.22214/ijraset.2024.61912. Crossref

A. B. Lasera and I. H. Wahyudi, “Development of a prototype IoT-based ESP32 electric power control system for a smart home system,” (in Indonesian), Elinvo (Electronics, Informatics, and Vocational Education), vol. 5, no. 2, pp. 112–120, Dec. 2020, doi: 10.21831/elinvo.v5i2.34261. Crossref

Muliadi, Imran Al, and Rasul Muh, “Development of a smart trash bin using ESP32,”, (in Indonesian), Jurnal Media Elektrik, vol. 17, no. 2, May 2020, doi: 10.59562/metrik.v17i2.5398. Crossref

W. Shalannanda, I. Zakia, F. Fahmi, and E. Sutanto, “Implementation of the hardware module of IoT-based infant incubator monitoring system,” in 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA, Nov. 2020, pp. 1–5. doi: 10.1109/TSSA51342.2020.9310901. Crossref


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.