A Robust SMO-PLL Estimation Algorithm for Enhancing Rotor Position Accuracy and Reducing Chattering Issues in Sensorless FOC of SPMSM
Abstract
Recent advancements in sensorless Field-oriented Control (FOC) of Surface Permanent Magnet Synchronous Motors (SPMSMs) have improved system reliability and cost-effectiveness. However, limitations such as speed chattering and inaccurate rotor position estimation remain problematic for Electric Vehicle (EV) applications. This study developed a sliding mode observer-phase locked loop (SMO-PLL) algorithm applied to sensorless FOC in SPMSMs. The SMO predicts the back EMF of the SPMSM, which the PLL then uses for precise rotor position and speed estimation. Simulations conducted in MATLAB Simulink demonstrate that the SMO-PLL significantly reduces chattering and achieves a rotor position estimation error of only 1 rad/min. While the quantitative integral error criteria for SMO-PLL (IAE: 0.0868, ITAE: 0.3069, ISE: 0.0229, ITSE: 0.0834) are slightly higher than those of Field Observer (FO) and Extended Electromagnetic Field Observer (EEMFO), speed control analysis confirms that SMO-PLL delivers a rapid steady-state response with minimal overshoot and oscillation. These findings are crucial for applications where speed stability is essential for passenger comfort and safety, highlighting the SMO-PLL's potential as a robust sensorless control solution for future EVs.

Keywords
References
R. Sreejith and B. Singh, “Improved sliding mode observer based position sensorless finite control set-model predictive control of pmsm drive for electric vehicle,” in India International Conference on Power Electronics, IICPE, 2018, vol. 2018-December. doi: 10.1109/IICPE.2018.8709544.
I. I. Abdalla, T. Ibrahim, and N. Bin Mohd Nor, “Development and optimization of a moving-magnet tubular linear permanent magnet motor for use in a reciprocating compressor of household refrigerators,” International Journal of Electrical Power and Energy Systems, vol. 77, pp. 263–270, May 2016, doi: 10.1016/j.ijepes.2015.11.020.
T. C. Lin and Z. Q. Zhu, “Sensorless operation capability of surface-mounted permanent-magnet machine based on high-frequency signal injection methods,” IEEE Trans Ind Appl, vol. 51, no. 3, pp. 2161–2171, May 2015, doi: 10.1109/TIA.2014.2382762.
H. H. Chou, Y. S. Kung, N. Q. Quynh, and S. Cheng, “Optimized fpga design, verification and implementation of a neuro-fuzzy controller for pmsm drives,” Math Comput Simul, vol. 90, pp. 28–44, 2013, doi: 10.1016/j.matcom.2012.07.012.
C. Chen, H. Zhou, G. Wang, and G. Liu, “Unified decoupling vector control of five-phase permanent-magnet motor with double-phase faults,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3017541.
J. Hu, J. Zou, F. Xu, Y. Li, and Y. Fu, “An improved pmsm rotor position sensor based on linear hall sensors,” IEEE Trans Magn, vol. 48, no. 11, pp. 3591–3594, 2012, doi: 10.1109/TMAG.2012.2202279.
S. Y. Kim, C. Choi, K. Lee, and W. Lee, “An improved rotor position estimation with vector-tracking observer in pmsm drives with low-resolution hall-effect sensors,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4078–4086, Sep. 2011, doi: 10.1109/TIE.2010.2098367.
W. C. Chi and M. Y. Cheng, “Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors,” ISA Trans, vol. 53, no. 2, pp. 444–453, 2014, doi: 10.1016/j.isatra.2013.09.017.
X. Song, B. Han, S. Zheng, and S. Chen, “A novel sensorless rotor position detection method for high-speed surface pm motors in a wide speed range,” IEEE Trans Power Electron, vol. 33, no. 8, pp. 7083–7093, Aug. 2018, doi: 10.1109/TPEL.2017.2753289.
O. C. Kivanc and S. B. Ozturk, “Sensorless pmsm drive based on stator feedforward voltage estimation improved with mras multiparameter estimation,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, 2018, doi: 10.1109/TMECH.2018.2817246.
N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless pmsm speed control using reduced-order extended kalman filters,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6574–6582, Dec. 2014, doi: 10.1109/TIE.2014.2320215.
Z. Wang, Y. Zheng, Z. Zou, and M. Cheng, “Position sensorless control of interleaved csi fed pmsm drive with extended kalman filter,” IEEE Trans Magn, vol. 48, no. 11, pp. 3688–3691, 2012, doi: 10.1109/TMAG.2012.2197180.
J. Rivera Dominguez, A. Navarrete, M. A. Meza, A. G. Loukianov, and J. Canedo, “Digital sliding-mode sensorless control for surface-mounted pmsm,” IEEE Trans Industr Inform, vol. 10, no. 1, pp. 137–151, 2014, doi: 10.1109/TII.2013.2262280.
Y. Zhao, W. Qiao, and L. Wu, “An adaptive quasi-sliding-mode rotor position observer-based sensorless control for interior permanent magnet synchronous machines,” IEEE Trans Power Electron, vol. 28, no. 12, 2013, doi: 10.1109/TPEL.2013.2246871.
L. Sun, X. Zhang, L. Sun, and K. Zhao, “Nonlinear speed control for pmsm system using sliding-mode control and disturbance compensation techniques,” IEEE Trans Power Electron, vol. 28, no. 3, 2013, doi: 10.1109/TPEL.2012.2206610.
S. Po-Ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for sensorless pmsm drive,” IEEE Trans Power Electron, vol. 27, no. 2, 2012, doi: 10.1109/TPEL.2011.2153212.
M. L. Corradini, G. Ippoliti, S. Longhi, and G. Orlando, “A quasi-sliding mode approach for robust control and speed estimation of pm synchronous motors,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, 2012, doi: 10.1109/TIE.2011.2158035.
G. Wang, R. Yang, and D. Xu, “DSP-based control of sensorless ipmsm drives for wide-speed-range operation,” IEEE Transactions on Industrial Electronics, vol. 60, no. 2, 2013, doi: 10.1109/TIE.2012.2205360.
D. Liang, J. Li, and R. Qu, “Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation,” IEEE Trans Ind Appl, vol. 53, no. 4, pp. 3672–3682, Jul. 2017, doi: 10.1109/TIA.2017.2690218.
B. Alessandro et al., “Surface permanent magnet synchronous motors’ passive sensorless contro l: a review,” Energies (Basel), doi: 10.3390/en15207747.
Z. Yujiao, Y. Haisheng, and W. Shixian, “An improved super-twisting high-order sliding mode observer for sensor less control of permanent magnet synchronous motor,” Energies (Basel), doi: 10.3390/en14196047.
Y. Yongjie and L. Xudong, “A novel nonsingular terminal sliding mode observer-based sensorless co ntrol for electrical drive system,” Mathematics, doi: 10.3390/math10173123.
Y. Park and S. K. Sul, “A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity,” IEEE Trans Power Electron, vol. 27, no. 12, 2012, doi: 10.1109/TPEL.2012.2192451.
Y. Inoue, K. Yamada, S. Morimoto, and M. Sanada, “Effectiveness of voltage error compensation and parameter identification for model-based sensorless control of ipmsm,” IEEE Trans Ind Appl, vol. 45, no. 1, 2009, doi: 10.1109/TIA.2008.2009617.
T. Hoshino and J. I. Itoh, “Output voltage correction for a voltage source type inverter of an induction motor drive,” IEEE Trans Power Electron, vol. 25, no. 9, 2010, doi: 10.1109/TPEL.2010.2049031.
S. H. Jung, H. Kobayashi, S. Doki, and S. Okuma, “An improvement of sensorless control performance by a mathematical modelling method of spatial harmonics for a synrm,” 2010. doi: 10.1109/IPEC.2010.5543555.
X. Song, J. Fang, B. Han, and S. Zheng, “Adaptive compensation method for high-speed surface pmsm sensorless drives of emf-based position estimation error,” IEEE Trans Power Electron, vol. 31, no. 2, pp. 1438–1449, Feb. 2016, doi: 10.1109/TPEL.2015.2423319.
R. Wegener, F. Senicar, C. Junge, and S. Soter, “Low cost position sensor for permanent magnet linear drive,” 2007. doi: 10.1109/PEDS.2007.4487882.
L. Tong et al., “An srf-pll-based sensorless vector control using the predictive deadbeat algorithm for the direct-driven permanent magnet synchronous generator,” IEEE Trans Power Electron, vol. 29, no. 6, 2014, doi: 10.1109/TPEL.2013.2272465.
T. V. Tran, T. W. Chun, H. H. Lee, H. G. Kim, and E. C. Nho, “PLL-based seamless transfer control between grid-connected and islanding modes in grid-connected inverters,” IEEE Trans Power Electron, vol. 29, no. 10, 2014, doi: 10.1109/TPEL.2013.2290059.
L. Wang, Q. Jiang, L. Hong, C. Zhang, and Y. Wei, “A novel phase-locked loop based on frequency detector and initial phase angle detector,” IEEE Trans Power Electron, vol. 28, no. 10, 2013, doi: 10.1109/TPEL.2012.2236848.
L. Harnefors and H. P. Nee, “A general algorithm for speed and position estimation of ac motors,” IEEE Transactions on Industrial Electronics, vol. 47, no. 1, 2000, doi: 10.1109/41.824128.
L. An, D. Franck, and K. Hameyer, “Sensorless field oriented control using back-emf and flux observer for a surface mounted permanent magnet synchronous motor.”
2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2015.
X. Liu et al., “SMO-based sensorless control of a permanent magnet synchronous motor,” Front Energy Res, vol. 10, Feb. 2022, doi: 10.3389/fenrg.2022.839329.
H. Ding, X. Zou, and J. Li, “Sensorless control strategy of permanent magnet synchronous motor based on fuzzy sliding mode observer,” IEEE Access, vol. 10, pp. 36743–36752, 2022, doi: 10.1109/ACCESS.2022.3164519.
W. Xu, S. Qu, L. Zhao, and H. Zhang, “An improved adaptive sliding mode observer for middle- and high-speed rotor tracking,” IEEE Trans Power Electron, vol. 36, no. 1, pp. 1043–1053, Jan. 2021, doi: 10.1109/TPEL.2020.3000785.
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 National Research and Innovation Agency

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.