Web
Analytics

Advanced State Estimations for Gravitational Oil/Water Separator Tanks using a Kalman Filter and Multi-Model Hypothesis Testing

  Zaid Cahya (1*), Parsaulian Siregar (2), Estiyanti Ekawati (3), Irfan Bahiuddin (4), Dito Eka Cahya (5), Tsani Hendro Nugroho (6), Heru Taufiqurrohman (7), Mohammed Boudaoud (8)

(1) Universite Polytechnique Hauts-de-France - France orcid
(2) Insitut Teknologi Bandung - Indonesia
(3) Insitut Teknologi Bandung - Indonesia
(4) Univesitas Gadjahmada - Indonesia
(5) Indonesia National Agency of Research and Innovation - Indonesia
(6) Indonesia National Agency of Research and Innovation - Indonesia
(7) Indonesia National Agency of Research and Innovation - Indonesia
(8) LAMIH UMR CNRS 8201 UNIVERSITE POLYTECHNIQUE HAUTS DE FRANCE, 59300 VALENCIENNES - France
(*) Corresponding Author

Received: October 18, 2024; Revised: March 13, 2025
Accepted: March 18, 2025; Published: August 31, 2025


How to cite (IEEE): Z. Cahya, P. Siregar, E. Ekawati, I. Bahiuddin, D. E. Cahya, T. H. Nugroho, H. Taufiqurrohman,  and M. Boudaoud, "Advanced State Estimations for Gravitational Oil/Water Separator Tanks using a Kalman Filter and Multi-Model Hypothesis Testing," Jurnal Elektronika dan Telekomunikasi, vol. 25, no. 1, pp. 9-19, Aug. 2025. doi: 10.55981/jet.682

Abstract

This paper presents a new application of the Kalman filter with Hypothesis testing for a fast and robust model-based estimator for measuring level interfaces of atmospheric gravitational oil-water separator tanks. A newly developed semi-empirical linearized model is applied in the estimator algorithm. A multi-model hypothesis-testing algorithm for covering more scenarios was deployed. The proposed method provides a cost-effective and straightforward solution for estimating all state variables in an oil-water separator. Our evaluation results demonstrate that the proposed algorithm achieves high accuracy with an observation error of less than 2% and a false alarm rate of 3.3% under 50-70% working conditions. Furthermore, the estimator can effectively handle process noise with a 10% feed offset. The proposed platform requires only a few installed sensors yet can accurately estimate unknown parameters. The proposed approach offers a robust and practical soft sensor solution for gravitational oil/water separators

  http://dx.doi.org/10.55981/jet.682

Keywords


semi-empirical model, multi-model hypothesis testing, Kalman Filter, gravitational oil/water separation, state estimation, measurements

Full Text:

  PDF

References


B. Christophers, "Fossilised capital: price and profit in the energy transition," New Polit. Econ., 27 (1) 146–159 (2022). doi:10.1080/13563467.2021.1926957.

P. Chankapure, P. Doggali, K. Motghare, S. Waghmare, S. Rayalu, Y. Teraoka, and N. Labhsetwar, "Coal and biomass based fuels in rural india : emissions and possibility of their control," Evergr. Jt. J. Nov. Carbon Resour. Sci. Green Asia Strateg., 4 8–12 (2011).

S. Hori, "Implications of energy efficiency and economic growth in developing countries," Evergr. Jt. J. Nov. Carbon Resour. Sci. Green Asia Strateg., 6 9–14 (2012).

Y. Gholipour, "Future of oil and renewable energy," Comput. Exp. Res. Mater. Renew. Energy; Vol 5 No 1 MayDO - 10.19184/Cerimre.V5i1.31492 , (2022). https://jurnal.unej.ac.id/index.php/CERiMRE/article/view/31492.

M. Fowlie, and R. Meeks, "The economics of energy efficiency in developing countries," Rev. Environ. Econ. Policy, 15 (2) 238–260 (2021). doi:10.1086/715606.

M.K. Barai, and B.B. Saha, "Energy security and sustainability in japan," Evergreen, 2 (1) 49–56 (2015). doi:10.5109/1500427.

G.G. Gerevini, M. Farenzena, and J.O. Trierweiler, "Slugging attenuation using nonlinear model predictive control in offshore oil production," J. Pet. Sci. Eng., 165 187–198 (2018). doi:https://doi.org/10.1016/j.petrol.2018.01.054.

K. Maneeintr, K. Sasaki, and Y. Sugai, "Experiment and numerical simulation of japanese heavy oil recovery," J. Nov. Carbon Resour. Sci., 2 41–44 (2010).

R.K. Gupta, G.J. Dunderdale, M.W. England, and A. Hozumi, "Oil/water separation techniques: a review of recent progresses and future directions," J. Mater. Chem. A, 5 (31) 16025–16058 (2017). doi:10.1039/c7ta02070h.

A.J. Jaworski, "On-line measurement of separation dynamics in primary gas/oil/water separators: challenges and technical solutions-a review," J. Pet. Sci. Eng., 68 (1) 47–59 (2009). doi:info:doi/.

B.K. Arvoh, N.O. Skeie, and M. Halstensen, "Estimation of gas/liquid and oil/water interface levels in an oil/water/gas separator based on pressure measurements and regression modelling," Sep. Purif. Technol., 107 204–210 (2013). doi:10.1016/j.seppur.2013.01.045.

S.K. Korkua, and S. Sakphrom, "Low-cost capacitive sensor for detecting palm-wood moisture content in real-time," Heliyon, 6 (8) e04555 (2020). doi:10.1016/j.heliyon.2020.e04555.

R. Neubeck, M. Stephan, T. Gaul, B. Weihnacht, L. Schubert, A.U. Bindingsbø, and J.M. Østvik, "Estimation of the filling distribution and height levels inside an insulated pressure vessel by guided elastic wave attenuation tomography," Sensors (Switzerland), 21 (1) 1–26 (2021). doi:10.3390/s21010179.

E.A. Alshaafi, A. Prakash, and S.M. Mercer, "Ultrasonic technique for tracking oil-water emulsion layer in separation vessels," J. Pet. Sci. Eng., 184 106591 (2020). doi:10.1016/j.petrol.2019.106591.

P.-A. Dreyfus, F. Psarommatis, G. May, and D. Kiritsis, "Virtual metrology as an approach for product quality estimation in industry 4.0: a systematic review and integrative conceptual framework," Int. J. Prod. Res., 60 (2) 742–765 (2022). doi:10.1080/00207543.2021.1976433.

C.J. Backi, and S. Skogestad, "Virtual inflow monitoring for a three phase gravity separator," 1st Annu. IEEE Conf. Control Technol. Appl. CCTA 2017, 2017-Janua (September) 1499–1504 (2017). doi:10.1109/CCTA.2017.8062670.

C.J. Backi, B.A. Grimes, and S. Skogestad, "A control- and estimation-oriented gravity separator model for oil and gas applications based upon first-principles," Ind. Eng. Chem. Res., 57 (21) 7201–7217 (2018). doi:10.1021/acs.iecr.7b04297.

W. Chonwattana, C. Panjapornpon, A. Tawai, and T. Dechakupt, "Model-based estimation and control of interface level in a two-phase vertical decanter: a case study of palm-oil/water system," Comput. Chem. Eng., 108 372–381 (2018). doi:10.1016/j.compchemeng.2017.10.022.

S. Radhoush, M. Bahramipanah, H. Nehrir, and Z. Shahooei, "A review on state estimation techniques in active distribution networks: existing practices and their challenges," Sustain., 14 (5) (2022). doi:10.3390/su14052520.

T. Rajasekhar, M. Trinadh, P. Veera Babu, A.V.S. Sainath, and A.V.R. Reddy, "Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group," J. Memb. Sci., 481 82–93 (2015). doi:https://doi.org/10.1016/j.memsci.2015.01.030.

J. Mao, Y. Sun, X. Yi, H. Liu, and D. Ding, "Recursive filtering of networked nonlinear systems: a survey," Int. J. Syst. Sci., 52 (6) 1110–1128 (2021). doi:10.1080/00207721.2020.1868615.

J. Walker, "Hypothesis tests," BJA Educ., 19 (7) 227–231 (2019). doi:10.1016/j.bjae.2019.03.006.

D. T. Avila, R. I. dos Santos, J. Mendling, and L. H. Thom, “A systematic literature review of process modeling guidelines and their empirical support,” Bus. Process Manag. J., vol. 27, no. 1, pp. 1–23, Jan. 2021, doi: 10.1108/BPMJ-10-2019-0407.

T. Palermo, J.P. Lebrun, B. Brocart, C. Noik, and P. Pagnier, "Liquid-liquid separation in gravitational subsea separators," Proc. Annu. Offshore Technol. Conf., 1 (October) 649–658 (2011). doi:10.4043/22458-ms.

T. Das, C.J. Backi, and J. Jäschke, "A model for subsea oil-water gravity separator to estimate unmeasured disturbances," Comput. Aided Chem. Eng., 40 1489–1494 (2017). doi:10.1016/B978-0-444-63965-3.50250-6.

J.P. Pascual, N. Von‐Ellenrieder, J. Areta, and C.H. Muravchik, "Non‐linear kalman filters comparison for generalised autoregressive conditional heteroscedastic clutter parameter estimation," IET Signal Process., 13 (6) 606–613 (2019). doi:10.1049/iet-spr.2018.5400.

Á. Deibe, J.A. Antón Nacimiento, J. Cardenal, and F. López Peña, "A kalman filter for nonlinear attitude estimation using time variable matrices and quaternions," Sensors, 20 (23) (2020). doi:10.3390/s20236731.

P. Ranganathan, and C.S. Pramesh, "An introduction to statistics: understanding hypothesis testing and statistical errors," Indian J. Crit. Care Med., 23 S230–S231 (2019). doi:10.5005/jp-journals-10071-23259.

E.J. Perkins, K. Gayen, J.E. Shoemaker, P. Antczak, L. Burgoon, F. Falciani, S. Gutsell, G. Hodges, A. Kienzler, D. Knapen, M. Mcbride, C. Willett, F.J. Doyle III, and N. Garcia-Reyero, "Chemical hazard prediction and hypothesis testing using quantitative adverse outcome pathways," 36 (1) 91–102 (2019). doi:10.14573/altex.1808241.

S.K. Das, and M.N. Biswas, "Separation of oil-water mixture in tank," Chem. Eng. Commun., 190 (1) 116–127 (2003). doi:10.1080/00986440302095.

S.A.K. Jeelani, and S. Hartland, "Prediction of steady state dispersion height from batch settling data," AIChE J., 31 (5) 711–720 (1985). doi:https://doi.org/10.1002/aic.690310503.

W. E. Odiete, and J. C. Agunwamba, "Residence time versus aspect ratio of conventional oil/water separators," Int. J. Eng. Trends Technol., 32 (1) 16–18 (2016). doi:10.14445/22315381/ijett-v32p203.

T. Lefebvre *, H. Bruyninckx, and J. De Schutter, "Kalman filters for non-linear systems: a comparison of performance," Int. J. Control, 77 (7) 639–653 (2004). doi:10.1080/00207170410001704998.

C.J. Keylock, "Hypothesis testing for nonlinear phenomena in the geosciences using synthetic, surrogate data," Earth Sp. Sci., 6 (1) 41–58 (2019). doi:https://doi.org/10.1029/2018EA000435.

S. Vergura, "Hypothesis tests-based analysis for anomaly detection in photovoltaic systems in the absence of environmental parameters," Energies, 11 (3) (2018). doi:10.3390/en11030485.

I.W.R. Saputra, O. Adebisi, E.B. Ladan, A. Bagareddy, A. Sarmah, and D.S. Schechter, "The influence of oil composition, rock mineralogy, aging time, and brine pre-soak on shale wettability," ACS Omega, 7 (1) 85–100 (2022). doi:10.1021/acsomega.1c03940.

M. Mohayeji, M. Farsi, M.R. Rahimpour, and A. Shariati, "Modeling and operability analysis of water separation from crude oil in an industrial gravitational coalescer," J. Taiwan Inst. Chem. Eng., 60 76–82 (2016). doi:https://doi.org/10.1016/j.jtice.2015.10.025.

S. Mardalena, P. Purhadi, J.D. Purnomo, and D.D. Prastyo, "Parameter estimation and hypothesis testing of multivariate poisson inverse gaussian regression," Symmetry (Basel)., 12 (10) (2020). doi:10.3390/sym12101738.

Z. Cahya, D. Cahya, T. Nugroho, A. Zuhri, and W. Agusta, “CNN Model with Parameter Optimisation for Fine-Grained Banana Ripening Stage Classification,” in Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, Nov. 2022, pp. 90–94. doi: 10.1145/3575882.3575900.

D. E. Cahya, Z. Cahya, H. Taufiqurrohman, H. Destika, M. N. Alfa, and T. E. Putri, “Ripeness Classification of Cavendish Bananas using Multi-object Detection Approach,” in 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Nov. 2023, pp. 146–151. doi: 10.1109/ICRAMET60171.2023.10366571.

J. Prihantoro, D. R. Anbiya, G. Prihantoro, E. Nashrullah, Z. Cahya, and Riza, “Comparison of Machine Learning Techniques for Grade Classification of Exported Cavendish Bananas,” in 2023 IEEE International Conference on Data and Software Engineering (ICoDSE), Sep. 2023, pp. 37–42. doi: 10.1109/ICoDSE59534.2023.10291592


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.