Colloidal TiO2-Modified Mesoporous Electron Transport Layer in Perovskite Solar Cells
Abstract

References
International Renewable Energy Agency, “Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper),” International Renewable Energy Agency, Abu Dhabi, 2019.
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, Apr. 2009, doi: 10.1021/ja809598r. Crossref
J. Park, J. Kim, H. S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, and S. I. Seok, “Controlled growth of perovskite layers with volatile alkylammonium chlorides,” Nature, vol. 616, no. 7958, pp. 724–730, Feb. 2023, doi: 10.1038/s41586-023-05825-y. Crossref
S. Khatoon, S. K. Yadav, V. Chakravorty, J. Singh, R. B. Singh, M. S. Hasnain, and S. M. M. Hasnain, “Perovskite solar cell’s efficiency, stability and scalability: A review,” Int. J. Energy Res., vol. 46, no. 15, pp. 21441–21451, Dec. 2022, doi: 10.1016/j.mset.2023.04.007. Crossref
S. Foo, M. Thambidurai, P. S. Kumar, R. Yuvakkumar, Y. Huang, and C. Dang, “Recent review on electron transport layers in perovskite solar cells,” Int. J. Energy Res., no. 15, pp. 21441–21451, Dec. 2022, doi: 10.1002/ER.7958. Crossref
A. Yamakata, and J. J. M. Vequizo, “Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: a review,” J. Photochem. Photobiol. C Photochem. Rev., vol. 40, pp. 234–243, Sep. 2019, doi: 10.1016/j.jphotochemrev.2018.12.001. Crossref
M. Gratzel and F.P. Rotzinger, “The influence of the crystal lattice structure on the conduction band energy of oxides of titanium(IV),” Chem. Phys. Lett., vol. 118, no. 5, pp. 474–477, Aug. 1985, doi: 10.1016/0009-2614(85)85335-5. Crossref
H. Zhu, Y. Ren, L. Pan, O. Ouellette, F. T. Eickemeyer, Y. Wu, X. Li, S. Wang, H. Liu, X. Dong, S. M. Zakeeruddin, Y. Liu, A. Hagfeldt, and M. Gr¨atzel, “Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%,” J. Am. Chem. Soc., vol. 143, no. 8, pp. 3231–3237, Feb. 2021, doi: 10.1021/jacs.0c12802. Crossref
H. Liu, X. Fu, W. Fu, B. Zong, L. Huang, H. Bala, S. Wang, Z. Guo, G. Sun, J. Cao, Z. Zhang, “An effective TiO2 blocking layer for hole-conductor-free perovskite solar cells based on carbon counter electrode,” Org. Electron., vol. 59, pp. 253–259, Aug. 2018, doi: 10.1016/j.orgel.2018.04.042. Crossref
B. Ohtani, O. O. Prieto-Mahaney, D. Li, R. Abe, “What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test,” J. Photochem. Photobiol. A: Chem., vol. 216, no. 2–3, pp. 179–182, Dec. 2010, doi: 10.1016/j.jphotochem.2010.07.024. Crossref
T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, “Highly efficient dye-sensitized solar cells based on carbon black counter electrodes,” J. Electrochem. Soc., vol. 153, no. 12, Art. no. A2255, Oct. 2006, doi: 10.1149/1.2358087. Crossref
E. Widianto, Shobih, E. S. Rosa, K. Triyana, N. M. Nursam, I. Santoso, “Graphene oxide as an effective hole transport material for low-cost carbon-based mesoscopic perovskite solar cells,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 12, no. 3, Art. no. 035001, Sep. 2021, doi: 10.1088/2043-6262/ac204a. Crossref
N. Wu, Y. Wu, D. Walter, H. Shen, T. Duong, D. Grant, C. Barugkin, X. Fu, J. Peng, T. White, K. Catchpole, K. Weber, “Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements,” Energy Technol., vol. 5, no. 10, pp. 1827–1835, Oct. 2017, doi: 10.1002/ente.201700374. Crossref
M. Nukunudompanich, G. Budiutama, K. Suzuki, K. Hasegawa, and M. Ihara, “Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells,” CrystEngComm, vol. 22, no. 16, pp. 2718–2727, Feb. 2020, doi: 10.1039/d0ce00169d. Crossref
M. I. El-Henaway, I. M. Hossain, L. Zhang, B. Bagheri, R. Kottokkaran, and V. L. Dalal, “Influence of grain size on the photo-stability of perovskite solar cells,” J. Mater. Sci. Mater. Electron., vol. 32, pp. 4067–4075, Jan. 2021, doi: 10.1007/s10854-020-05148-y. Crossref
Q. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, and Y. Vaynzof, “Small grains as recombination hot spots in perovskite solar cells,” Matter, vo. 4, no. 5, pp. 1683–1701, May 2021, doi: 10.1016/j.matt.2021.02.020. Crossref
Z. Wang and Y. Jiang, “Advances in perovskite solar cells: Film morphology control and interface engineering,” J. Clean. Prod., vol. 317, Art. no. 128368, Oct. 2021, doi: 10.1016/j.jclepro.2021.128368. Crossref
H. A. Bioki, A. Moshaii, and M. B. Zarandi, “Improved morphology, structure and optical properties of CH3NH3PbI3 film via HQ additive in PbI2 precursor solution for efficient and stable mesoporous perovskite solar cells,” Synth. Met., vol. 283, Art. no. 116965, 2022, doi: 10.1016/j.synthmet.2021.116965. Crossref
N. Guan, Y. Zhang, W. Chen, Z. Jiang, L. Gu, R. Zhu, D. Yadav, D. Li, B. Xu, L. Cao, X. Gao, Y. Chen, and L. Song, “Deciphering the morphology change and performance enhancement for perovskite solar cells induced by surface modification,” Adv. Sci., vol. 10, no. 3, Art. no. 2205342, Dec. 2023, doi: 10.1002/advs.202205342. Crossref
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 National Research and Innovation Agency

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.