Colloidal TiO2-Modified Mesoporous Electron Transport Layer in Perovskite Solar Cells

  Evira Bella Yustiani (1), Putri Nur Anggraini (2*), Shobih Shobih (3), Eri Widianto (4), Lilis Retnaningsih (5), Syoni Soepriyanto (6), Imam Santoso (7), Natalita Maulani Nursam (8)

(1) Departement of Metallurgical Engineering Bandung Institute of Technology - Indonesia
(2) National Research and Innovation Agency (BRIN) - Indonesia - [ https://www.scopus.com/authid/detail.uri?authorId=57190936298 ]
(3) National Research and Innovation Agency (BRIN)
(4) Department of Mechanical Engineering Singaperbangsa University
(5) National Research and Innovation Agency (BRIN)
(6) Departement of Metallurgical Engineering Bandung Institute of Technology
(7) Departement of Metallurgical Engineering Bandung Institute of Technology - Indonesia
(8) Research Center for Electronics National Research and Innovation Agency (BRIN) - Indonesia
(*) Corresponding Author

Received: November 03, 2023; Revised: November 20, 2023
Accepted: December 08, 2023; Published: December 31, 2023

How to cite (IEEE): E. B. Yustiani, P. N. Anggraini, S. Shobih, E. Widianto, L. Retnaningsih, S. Soepriyanto, I. Santoso,  and N. M. Nursam, "Colloidal TiO2-Modified Mesoporous Electron Transport Layer in Perovskite Solar Cells," Jurnal Elektronika dan Telekomunikasi, vol. 23, no. 2, pp. 115-121, Dec. 2023. doi: 10.55981/jet.599


The electron transport layer (ETL) is a crucial part in perovskite solar cells (PSC) as it specifically governs the charge extraction at the perovskite/ETL interface. In this study, methylammonium lead iodide-based PSCs with an n-i-p structure were fabricated and modified by adding colloidal TiO2 into the mesoporous TiO2 film as ETL. The effect of the colloidal TiO2 addition on the PSC performance was investigated for ETL comprising different types of TiO2 particles, i.e. P25 and anatase TiO2. Despite producing lower performance than the PSC made with commercial paste, the power conversion efficiency of the PSCs could be improved with the introduction of colloidal TiO2 solution. An optimum condition was observed depending on the type of TiO2 particle, where the best performing device was achieved with colloidal TiO2 of 0.4 and 0.2 mL for P25 and anatase TiO2, respectively. The amount of colloidal TiO2 in samples with P25 overall had less impact than the samples with anatase TiO2.


Full Text:



International Renewable Energy Agency, “Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper),” International Renewable Energy Agency, Abu Dhabi, 2019.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050–6051, Apr. 2009, doi: 10.1021/ja809598r. Crossref

J. Park, J. Kim, H. S. Yun, M. J. Paik, E. Noh, H. J. Mun, M. G. Kim, T. J. Shin, and S. I. Seok, “Controlled growth of perovskite layers with volatile alkylammonium chlorides,” Nature, vol. 616, no. 7958, pp. 724–730, Feb. 2023, doi: 10.1038/s41586-023-05825-y. Crossref

S. Khatoon, S. K. Yadav, V. Chakravorty, J. Singh, R. B. Singh, M. S. Hasnain, and S. M. M. Hasnain, “Perovskite solar cell’s efficiency, stability and scalability: A review,” Int. J. Energy Res., vol. 46, no. 15, pp. 21441–21451, Dec. 2022, doi: 10.1016/j.mset.2023.04.007. Crossref

S. Foo, M. Thambidurai, P. S. Kumar, R. Yuvakkumar, Y. Huang, and C. Dang, “Recent review on electron transport layers in perovskite solar cells,” Int. J. Energy Res., no. 15, pp. 21441–21451, Dec. 2022, doi: 10.1002/ER.7958. Crossref

A. Yamakata, and J. J. M. Vequizo, “Curious behaviors of photogenerated electrons and holes at the defects on anatase, rutile, and brookite TiO2 powders: a review,” J. Photochem. Photobiol. C Photochem. Rev., vol. 40, pp. 234–243, Sep. 2019, doi: 10.1016/j.jphotochemrev.2018.12.001. Crossref

M. Gratzel and F.P. Rotzinger, “The influence of the crystal lattice structure on the conduction band energy of oxides of titanium(IV),” Chem. Phys. Lett., vol. 118, no. 5, pp. 474–477, Aug. 1985, doi: 10.1016/0009-2614(85)85335-5. Crossref

H. Zhu, Y. Ren, L. Pan, O. Ouellette, F. T. Eickemeyer, Y. Wu, X. Li, S. Wang, H. Liu, X. Dong, S. M. Zakeeruddin, Y. Liu, A. Hagfeldt, and M. Gr¨atzel, “Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%,” J. Am. Chem. Soc., vol. 143, no. 8, pp. 3231–3237, Feb. 2021, doi: 10.1021/jacs.0c12802. Crossref

H. Liu, X. Fu, W. Fu, B. Zong, L. Huang, H. Bala, S. Wang, Z. Guo, G. Sun, J. Cao, Z. Zhang, “An effective TiO2 blocking layer for hole-conductor-free perovskite solar cells based on carbon counter electrode,” Org. Electron., vol. 59, pp. 253–259, Aug. 2018, doi: 10.1016/j.orgel.2018.04.042. Crossref

B. Ohtani, O. O. Prieto-Mahaney, D. Li, R. Abe, “What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test,” J. Photochem. Photobiol. A: Chem., vol. 216, no. 2–3, pp. 179–182, Dec. 2010, doi: 10.1016/j.jphotochem.2010.07.024. Crossref

T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Grätzel, “Highly efficient dye-sensitized solar cells based on carbon black counter electrodes,” J. Electrochem. Soc., vol. 153, no. 12, Art. no. A2255, Oct. 2006, doi: 10.1149/1.2358087. Crossref

E. Widianto, Shobih, E. S. Rosa, K. Triyana, N. M. Nursam, I. Santoso, “Graphene oxide as an effective hole transport material for low-cost carbon-based mesoscopic perovskite solar cells,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 12, no. 3, Art. no. 035001, Sep. 2021, doi: 10.1088/2043-6262/ac204a. Crossref

N. Wu, Y. Wu, D. Walter, H. Shen, T. Duong, D. Grant, C. Barugkin, X. Fu, J. Peng, T. White, K. Catchpole, K. Weber, “Identifying the cause of voltage and fill factor losses in perovskite solar cells by using luminescence measurements,” Energy Technol., vol. 5, no. 10, pp. 1827–1835, Oct. 2017, doi: 10.1002/ente.201700374. Crossref

M. Nukunudompanich, G. Budiutama, K. Suzuki, K. Hasegawa, and M. Ihara, “Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells,” CrystEngComm, vol. 22, no. 16, pp. 2718–2727, Feb. 2020, doi: 10.1039/d0ce00169d. Crossref

M. I. El-Henaway, I. M. Hossain, L. Zhang, B. Bagheri, R. Kottokkaran, and V. L. Dalal, “Influence of grain size on the photo-stability of perovskite solar cells,” J. Mater. Sci. Mater. Electron., vol. 32, pp. 4067–4075, Jan. 2021, doi: 10.1007/s10854-020-05148-y. Crossref

Q. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, and Y. Vaynzof, “Small grains as recombination hot spots in perovskite solar cells,” Matter, vo. 4, no. 5, pp. 1683–1701, May 2021, doi: 10.1016/j.matt.2021.02.020. Crossref

Z. Wang and Y. Jiang, “Advances in perovskite solar cells: Film morphology control and interface engineering,” J. Clean. Prod., vol. 317, Art. no. 128368, Oct. 2021, doi: 10.1016/j.jclepro.2021.128368. Crossref

H. A. Bioki, A. Moshaii, and M. B. Zarandi, “Improved morphology, structure and optical properties of CH3NH3PbI3 film via HQ additive in PbI2 precursor solution for efficient and stable mesoporous perovskite solar cells,” Synth. Met., vol. 283, Art. no. 116965, 2022, doi: 10.1016/j.synthmet.2021.116965. Crossref

N. Guan, Y. Zhang, W. Chen, Z. Jiang, L. Gu, R. Zhu, D. Yadav, D. Li, B. Xu, L. Cao, X. Gao, Y. Chen, and L. Song, “Deciphering the morphology change and performance enhancement for perovskite solar cells induced by surface modification,” Adv. Sci., vol. 10, no. 3, Art. no. 2205342, Dec. 2023, doi: 10.1002/advs.202205342. Crossref

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2023 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.