Comparison of a Circular Patch Unit Cell Performance for Reflector Applications between Using FR4 and F4BMX220 Substrates at 3.5 GHz Frequency

  Taufiqqurrachman - (1*), Muhammad Kamal Abdul Rahim (2), Dadin Mahmudin (3), R. Priyo Hartono Adji (4), Deni Permana Kurniadi (5), Winy Desvasari (6), Sulistyaningsih - (7), Fajri Darwis (8), Arief Nur Rahman (9), Prasetyo Putranto (10), Arie Setiawan (11), Aminuddin Rizal (12)

(1) National Research and Innovation Agency (BRIN) - Indonesia - [ https://www.researchgate.net/profile/Taufiqqurrachman-2 ]
(2) Universiti Teknologi Malaysia - Malaysia
(3) National Research and Innovation Agency (BRIN) - Indonesia
(4) National Research and Innovation Agency (BRIN) - Indonesia
(5) National Research and Innovation Agency (BRIN) - Indonesia
(6) National Research and Innovation Agency (BRIN) - Indonesia
(7) National Research and Innovation Agency (BRIN) - Indonesia
(8) National Research and Innovation Agency (BRIN) - Indonesia
(9) National Research and Innovation Agency (BRIN) - Indonesia
(10) National Research and Innovation Agency (BRIN) - Indonesia
(11) Mie Univeristy - Japan
(12) Politeknik Negeri Semarang - Indonesia
(*) Corresponding Author

Received: October 02, 2023; Revised: November 27, 2023
Accepted: December 07, 2023; Published: December 31, 2023

How to cite (IEEE): T. -, M. K. Abdul Rahim, D. Mahmudin, R. H. Adji, D. P. Kurniadi, W. Desvasari, S. -, F. Darwis, A. N. Rahman, P. Putranto, A. Setiawan,  and A. Rizal, "Comparison of a Circular Patch Unit Cell Performance for Reflector Applications between Using FR4 and F4BMX220 Substrates at 3.5 GHz Frequency," Jurnal Elektronika dan Telekomunikasi, vol. 23, no. 2, pp. 91-98, Dec. 2023. doi: 10.55981/jet.587


This paper presents a performance comparison of the circular patch unit cell as a unit cell for reflector application at 3.5 GHz frequency using a dielectric substrate between FR4 and F4BMX220 substrates. A circular patch is chosen as the unit cell of a reflector because it is commonly used, fabricated, and has a wider bandwidth compared to other structures. A performance comparison of the circular patch on both dielectric substrates is presented in a graph of S-parameters, reflection phase, and operating bandwidth, as well as in the table of dimensions, where the result is performed by simulation using CST software. Based on the simulated results, the F4BMX220 has a better performance compared to the FR4 in terms of the reflection value, operating bandwidth, and dielectric substrate thickness. However, a circular patch diameter when using the F4BMX220 is bigger than when using the FR4 substrate because the FR4 substrate has a higher dielectric constant than the F4BMX220, which is twice the F4BMX220 dielectric constant. Also, the F4BMX220 substrate has a narrower bandwidth compared to the FR4 substrate, which is a difference of around 0.1 GHz. The circular patch when using the F4BMX220 substrate has 0.96 of a reflection value, 0.007 of an absorption value, -6.77° of the reflection phase, and 0.24 GHz of the operating bandwidth at the normal incident wave angle (0°). Also, it can be properly worked if the incident wave angle is moving until 60°. The F4BMX220 substrate has the best performance compared to the FR4 substrate because the reflection value is much better value, even at the incident wave angle of 60°.



Circular patch, reflector, FR4 substrate, F4BMX220 substrate

Full Text:



Cisco, “Cisco visual networking index (vni) global mobile data trafficforecast update, 2017-2022 white paper,” 2019.

X. B. Maxama and E. D. Markus, "A Survey on Propagation Challenges in Wireless Communication Networks over Irregular Terrains," 2018 Open Innovations Conference (OI), Johannesburg, South Africa, 2018, pp. 79-86, doi: 10.1109/OI.2018.8535598. Crossref

D. D. Falconer and J. P. DeCruyenaere, "Coverage enhancement methods for LMDS," Communications Magazine, IEEE, vol.41, no.7, pp.86-92, July 2003. Crossref

A. I. Sulyman, A. T. Nassar, M. K. Samimi, et al., "Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands," Communications Magazine, IEEE, vol.52, no.9, pp.78-86, September 2014. Crossref

Z. Peng et al., “An Effective Coverage Scheme With Passive-Reflectors for Urban Millimeter-Wave Communication,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 398–401, 2016, doi: 10.1109/lawp.2015.2447734. Crossref

V. G. Veselago, “THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $epsilon$ AND μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, Apr. 1968, doi: 10.1070/pu1968v010n04abeh003699. Crossref

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, May 2000, doi: 10.1103/physrevlett.84.4184. Crossref

B. Niu and J. Tan, “Compact four‐element MIMO antenna using T‐shaped and anti‐symmetric U‐shaped slotted SIW cavities,” Electronics Letters, vol. 55, no. 19, pp. 1031–1032, Sep. 2019, doi: 10.1049/el.2019.2142. Crossref

A. A. Fathnan, . Taufiqqurqchman., Y. N. Wijayanto, D. Mahmudin, and P. Daud, “Efek Kopling pada Filter Metamaterial Coplanar Waveguide Menggunakan SRRs Persegi Panjang Horizontal,” Jurnal Elektronika dan Telekomunikasi, vol. 15, no. 1, p. 18, Jun. 2016, doi: 10.14203/jet.v15.18-22. Crossref

J. Yang, C. Huang, J. Song, X. Zhang, X. Xie, and X. Luo, “Metasurface-Based Lens for Antenna Gain Enhancement and Radar Cross Section Reduction,” IEEE Photonics Journal, vol. 11, no. 6, pp. 1–9, Dec. 2019, doi: 10.1109/jphot.2019.2950194. Crossref

S. A. Mohammed, R. A. Kamil Albadri, and K. S. L. Al-Badri, “Simulation of the microwave five-band a perfect metamaterial absorber for the 5G communication‏,” Heliyon, vol. 9, no. 9, p. e19466, Sep. 2023, doi: 10.1016/j.heliyon.2023.e19466. Crossref

B. C. Nguyen, T. Q. Pham, N. N. Thang, T. M. Hoang, and P. T. Tran, “Improving the performance of wireless half-duplex and full-duplex relaying networks with intelligent reflecting surface,” Journal of the Franklin Institute, vol. 360, no. 4, pp. 3095–3118, Mar. 2023, doi: 10.1016/j.jfranklin.2023.01.030. Crossref

M. D. Gregory et al., “A Low Cost and Highly Efficient Metamaterial Reflector Antenna,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 3, pp. 1545–1548, Mar. 2018, doi: 10.1109/tap.2017.2781151. Crossref

A. Hoque, M. T. Islam, A. F. Almutairi, and M. E. H. Chowdhury, “DNG Metamaterial Reflector Using SOCT Shaped Resonator for Microwave Applications,” IEEE Access, vol. 9, pp. 59148–59159, 2021, doi: 10.1109/access.2021.3071472. Crossref

Z. He, J. Jin, Y. Zhang and Y. Duan, "Design of A Two-Dimensional “T” Shaped Metamaterial with Wideband, Low Loss," in IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1-4, March 2019, Art no. 1100204, doi: 10.1109/TASC.2018.2889356. Crossref

S. Tariq, S. I. Naqvi, N. Hussain and Y. Amin, "A Metasurface-Based MIMO Antenna for 5G Millimeter-Wave Applications," in IEEE Access, vol. 9, pp. 51805-51817, 2021, doi: 10.1109/ACCESS.2021.3069185. Crossref

S. M. R. H. Shawon, S. Kapali, I. B. F. Rahman, S. Islam and K. Ali, "Switchable THz Guided Mode Enhancement in Subwavelength Thick PTFE — Polyimide Based Metamaterial Devices," in IEEE Access, vol. 11, pp. 77919-77928, 2023, doi: 10.1109/ACCESS.2023.3298298. Crossref

Z. Liu, P. Wang and Z. Zeng, "Enhancement of the Gain for Microstrip Antennas Using Negative Permeability Metamaterial on Low Temperature Co-Fired Ceramic (LTCC) Substrate," in IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 429-432, 2013, doi: 10.1109/LAWP.2013.2254697. Crossref

Ouboudrar Ismail, Lagmich Youssef, Oulhaj Otman and Amina Aghanim, “Design of a Circular Patch Antenna with a reflector for GPR applications”, ITM Web Conf., 48 (2022) 01004, DOI: 10.1051/itmconf/20224801004. Crossref

C. Saetiaw, C. Taonok and S. Summart, "Design of Modified-Circular Patch Antenna with AMC Reflector for WLAN Applications," 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology (ECTI-CON), Chiang Rai, Thailand, 2018, pp. 213-216, doi: 10.1109/ECTICon.2018.8619886. Crossref

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2023 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.