Web
Analytics

Investigation of Thermoelectric Properties of a Two-Dimensional Janus Si2SbBi and non-Janus SiSb using Computational Method Density-Functional Theory

  Yusuf Affandi (1*), Muhammad Yusrul Hanna (2)

(1) Institut Teknologi Sumatera - Indonesia orcid
(2) National Research and Innovation Agency (BRIN) - Indonesia orcid
(*) Corresponding Author

Received: August 24, 2023; Revised: October 02, 2023
Accepted: December 15, 2023; Published: December 31, 2023


How to cite (IEEE): Y. Affandi,  and M. Y. Hanna, "Investigation of Thermoelectric Properties of a Two-Dimensional Janus Si2SbBi and non-Janus SiSb using Computational Method Density-Functional Theory," Jurnal Elektronika dan Telekomunikasi, vol. 23, no. 2, pp. 122-127, Dec. 2023. doi: 10.55981/jet.567

Abstract

Two-dimensional materials are of considerable interest owing to their unique electronic and thermal properties. In this study, we investigate the thermoelectric (TE) potential of two-dimensional Janus Si2SbBi and compare it with that non-Janus SiSb based on the density-functional theory (DFT) calculations. According to the DFT calculations, both materials exhibit semiconductor properties with bandgaps of 0.728 eV (Janus Si2SbBi) and 0.82 eV (SiSb), respectively. Having information on the energy band structure, we evaluated TE properties using the Boltzmann transport equations as a function of Fermi energy as implemented in BoltzTraP2 code. We find a Seebeck coefficient of 1349 (1342)  for -type ( -type) dopingat T = 300 K of the Si2SbBi monolayer. The results of our study present that the Janus Si2SbBi monolayer possesses a high Seebeck coefficient and electrical conductivity, leading to a substantial power factor (PF) of    at 300 K. The PF increase with increase in temperature and has the highest peak value up to  at 600 K. The results show that the Seebecek coefficient, electrical conductivity and power factor of the Janus Si2SbBi monolayer are greater compared to those of non-Janus SiSb monolayer. Our study presents Janus Si2SbBi as a potential thermoelectric candidate, highlighting its prospective use in advanced thermoelectric applications.


  http://dx.doi.org/10.55981/jet.567

Keywords


Thermoelectrics; electronics

Full Text:

  PDF

References


M. A. Karri, E. F. Thacher, and B. T. Helenbrook, “Exhaust energy conversion by thermoelectric generator: two case studies,” Energy Convers. Manag., vol. 52, no. 3, pp. 1596–1611, 2011, doi: 10.1016/j.enconman.2010.10.013. Crossref

M. Aneke and M. Wang, “Energy storage technologies and real life applications – a state of the art review,” Appl. Energy, vol. 179, pp. 350–377, 2016, doi: 10.1016/j.apenergy.2016.06.097. Crossref

J. Yang et al., “On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective,” npj Comput. Mater., vol. 2, no. October 2015, 2016, doi: 10.1038/npjcompumats.2015.15. Crossref

Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Appl. Energy, vol. 104, pp. 538–553, 2013, doi: 10.1016/j.apenergy.2012.11.051. Crossref

D. G. Cahill et al., “Nanoscale thermal transport. ii. 2003-2012,” Appl. Phys. Rev., vol. 1, no. 1, 2014, doi: 10.1063/1.4832615. Crossref

B. Liao and G. Chen, “Nanocomposites for thermoelectrics and thermal engineering,” MRS Bull., vol. 40, no. 9, pp. 746–752, 2015, doi: 10.1557/mrs.2015.197. Crossref

Y. Affandi, M. A. U. Absor, and K. Abraha, “Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides wx 2 (x = s, se),” in J. Phys. Conf. Ser., 2018, vol. 1011, no. 1. doi: 10.1088/1742-6596/1011/1/012070. Crossref

Y. Affandi and M. A. Ulil Absor, “Electric field-induced anisotropic rashba splitting in two dimensional tungsten dichalcogenides wx2 (x: s, se, te): a first-principles study,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 114, 2019, doi: 10.1016/j.physe.2019.113611. Crossref

M. Y. Hanna, E. H. Hasdeo, E. Suprayoga, and A. R. T. Nugraha, “Thermoelectric properties of two-dimensional hydrogenated borophene: a first-principles study,” AIP Conf. Proc., vol. 2256, no. September, 2020, doi: 10.1063/5.0014610. Crossref

K. Kaur, S. A. Khandy, S. Dhiman, U. B. Sharopov, and J. Singh, “Computational prediction of thermoelectric properties of 2d materials,” Electron. Struct., vol. 4, no. 2, 2022, doi: 10.1088/2516-1075/ac635b. Crossref

J. O. Morales-Ferreiro, D. E. Diaz-Droguett, D. Celentano, and T. Luo, “First-principles calculations of thermoelectric properties of iv–vi chalcogenides 2d materials,” Front. Mech. Eng., vol. 3, no. December, pp. 1–10, 2017, doi: 10.3389/fmech.2017.00015. Crossref

J. H. Yang, Q. Yuan, H. Deng, S. H. Wei, and B. I. Yakobson, “Earth-abundant and non-toxic six (x = s, se) monolayers as highly efficient thermoelectric materials,” J. Phys. Chem. C, vol. 121, no. 1, pp. 123–128, 2017, doi: 10.1021/acs.jpcc.6b10163. Crossref

R. N. Somaiya, Y. A. Sonvane, and S. K. Gupta, “Exploration of the strain and thermoelectric properties of hexagonal six (x= n, p, as, sb, and bi) monolayers,” Phys. Chem. Chem. Phys., vol. 22, no. 7, pp. 3990–3998, 2020. Crossref

S. Babaee Touski and N. Ghobadi, “Structural, electrical, and rashba properties of monolayer janus si2xy (x,y =p, as, sb, and bi),” Phys. Rev. B, vol. 103, no. 16, 2021, doi: 10.1103/PhysRevB.103.165404. Crossref

A. Lukmantoro and M. A. U. Absor, “Anisotropic rashba splitting dominated by out-of-plane spin polarization in two-dimensional janus xa_2 y (a= si, sn, ge; x,y= sb, bi) with surface imperfection,” pp. 1–28, 2023, [Online]. Available: http://arxiv.org/abs/2308.06761. Crossref

P. Giannozzi et al., “QUANTUM espresso: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter, vol. 21, no. 39, 2009, doi: 10.1088/0953-8984/21/39/395502. Crossref

G. K. H. Madsen and D. J. Singh, “BoltzTraP. a code for calculating band-structure dependent quantities,” Comput. Phys. Commun., vol. 175, no. 1, pp. 67–71, 2006, doi: 10.1016/j.cpc.2006.03.007. Crossref

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996, doi: 10.1103/PhysRevLett.77.3865. Crossref

D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, vol. 41, no. 11, p. 7892, 1990. Crossref

M. Kawamura, Y. Gohda, and S. Tsuneyuki, “Improved tetrahedron method for the brillouin-zone integration applicable to response functions,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 89, no. 9, pp. 1–9, 2014, doi: 10.1103/PhysRevB.89.094515. Crossref

H. J. Goldsmid and others, Introduction to thermoelectricity, vol. 121. Springer, 2010.

M. Khazaei, M. Arai, T. Sasaki, M. Estili, and Y. Sakka, “Two-dimensional molybdenum carbides: potential thermoelectric materials of the mxene family,” Phys. Chem. Chem. Phys., vol. 16, no. 17, pp. 7841–7849, 2014. Crossref

K. Kaur, D. Murali, and B. R. K. Nanda, “Stretchable and dynamically stable promising two-dimensional thermoelectric materials: scp and scas,” J. Mater. Chem. A, vol. 7, no. 20, pp. 12604–12615, 2019. Crossref

A. F. Wani, B. Rani, S. Dhiman, U. B. Sharopov, and K. Kaur, “SiH monolayer: a promising two-dimensional thermoelectric material,” Int. J. Energy Res., vol. 46, no. 8, pp. 10885–10893, 2022, doi: 10.1002/er.7889. Crossref

A. Bafekry, F. Shojai, D. M. Hoat, M. Shahrokhi, M. Ghergherehchi, and C. Nguyen, “The mechanical, electronic, optical and thermoelectric properties of two-dimensional honeycomb-like of xsb (x = si, ge, sn) monolayers: a first-principles calculations,” RSC Adv., vol. 10, no. 51, pp. 30398–30405, 2020, doi: 10.1039/d0ra05587e. Crossref

M. G. Holland, “Analysis of lattice thermal conductivity,” Phys. Rev., vol. 132, no. 6, pp. 2461–2471, Dec. 1963, doi: 10.1103/PhysRev.132.2461. Crossref

M. Jonson and G. D. Mahan, “Mott’s formula for the thermopower and the wiedemann-franz law,” Phys. Rev. B, vol. 21, no. 10, pp. 4223–4229, May 1980, doi: 10.1103/PhysRevB.21.4223. Crossref

S. Nath, “Thermoelectric and optical properties of 2d hexagonal dirac material be 3 x 2 (x = c, si, ge, sn): a density functional theory study,” J. Appl. Phys., vol. 130, p. 55106, 2021, doi: 10.1063/5.0059942. Crossref


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.