Design of Brushless DC Motor Driver Based on Bootstrap Circuit

  Khoirudin Fathoni (1*), Esa Apriaskar (2), Nur Azis Salim (3), Vera Noviana Sulistyawan (4), Rifki Lukman Satria (5), Syahroni Hidayat (6)

(1) Universitas Negeri Semarang - Indonesia
(2) Universitas Negeri Semarang - Indonesia
(3) Universitas Negeri Semarang - Indonesia
(4) Universitas Negeri Semarang - Indonesia
(5) Universitas Negeri Semarang - Indonesia
(6) Universitas Negeri Semarang - Indonesia
(*) Corresponding Author

Received: August 02, 2023; Revised: November 06, 2023
Accepted: November 06, 2023; Published: December 31, 2023

How to cite (IEEE): K. Fathoni, E. Apriaskar, N. A. Salim, V. N. Sulistyawan, R. L. Satria,  and S. Hidayat, "Design of Brushless DC Motor Driver Based on Bootstrap Circuit," Jurnal Elektronika dan Telekomunikasi, vol. 23, no. 2, pp. 108-114, Dec. 2023. doi: 10.55981/jet.563


Brushless DC (BLDC) motor is a three-phase motor that cannot work directly with DC current but requires electronic commutation to replace the brush function in DC motor. This paper aims to implement BLDC motor driver integration based on bootstrap circuit using Autodesk Eagle. The driver board consist of bootstrap circuit based on IR2110, MOSFETs, three voltage regulator, ESP32 microcontroller and ACS712 current sensor connection, logic level converter, and BLDC hall effect signal sensor conditioning. The research proposes bootstrap capacitor calculation based on charging/discharging capacitor principle and the minimum motor speed rotation. The implemented driver has 14x10 cm dimension tested to drive 24V/135W/6000rpm sensored BLDC motor using six steps commutation with pulse width modulation (PWM) inserted programmatically in ESP 32 to drive the high side MOSFET of the driver without AND gate circuit. The effect of pwm frequency and dutycycle variation to the speed and current of the motor is investigated. The results showed that the driver with both 12 V and 24 V voltage source and 68 μF bootstrap capacitor work optimally in 20 KHz PWM frequency both in open loop and closed loop speed control test. The motor reach 129 W for the largest power and 5250 rpm for the fastest speed in 24 V supply.



BLDC motor; 3 phases motor driver; bootstrap circuit

Full Text:



A. S. Al-Adsani, M. E. AlSharidah, and O. Beik, “BLDC motor drives: a single hall sensor method and a 160° commutation strategy,” IEEE Trans. Energy Convers., vol. 36, no. 3, pp. 2025–2035, Sep. 2021, doi: 10.1109/TEC.2020.3046183. Crossref

S. Derammelaere, M. Haemers, J. De Viaene, F. Verbelen, and K. Stockman, “A quantitative comparison between bldc, pmsm, brushed dc and stepping motor technologies,” 2017. [Online]. Available: https://ieeexplore.ieee.org/document/7837471. Crossref

D. Mohanraj et al., “A review of bldc motor: state of art, advanced control techniques, and applications,” IEEE Access, vol. 10, pp. 54833–54869, 2022, doi: 10.1109/ACCESS.2022.3175011. Crossref

B. Banu Rekha, B. Somasundaram, L. Ashok Kumar, and P. Balekai, “A technical review on advantages of using ec bldc fans in factory and commercial buildings,” Energy Eng., vol. 115, no. 3, pp. 57–74, May 2018, doi: 10.1080/01998595.2018.12002418. Crossref

K. FATHONI and A. B. UTOMO, “Perancangan kendali optimal pada motor arus searah tanpa sikat melalui metode lqri,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 7, no. 2, p. 377, May 2019, doi: 10.26760/elkomika.v7i2.377. Crossref

K. C. N. Sridivya and T. V. Kiran, “Space vector pwm control of bldc motor,” in 2017 Int. Conf. Power Embed. Drive Control, Mar. 2017, pp. 71–78. doi: 10.1109/ICPEDC.2017.8081062. Crossref

Z. Li, J. Wang, L. Zhou, X. Liu, and F. Jiang, “Enhanced generalized vector control strategy for torque ripple mitigation of ipm-type brushless dc motors,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12038–12049, Dec. 2019, doi: 10.1109/TPEL.2019.2906247. Crossref

A. G. de Castro, W. C. A. Pereira, T. E. P. de Almeida, C. M. R. de Oliveira, J. Roberto Boffino de Almeida Monteiro, and A. A. de Oliveira, “Improved finite control-set model-based direct power control of bldc motor with reduced torque ripple,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4476–4484, Sep. 2018, doi: 10.1109/TIA.2018.2835394. Crossref

M. S. Trivedi and R. K. Keshri, “Evaluation of predictive current control techniques for pm bldc motor in stationary plane,” IEEE Access, vol. 8, pp. 46217–46228, 2020, doi: 10.1109/ACCESS.2020.2978695. Crossref

K. V. K. Varma and A. Ramkumar, “Implementation of spv-powered water pumping system using non-isolated sc converter topology,” Electr. Eng., vol. 103, no. 3, pp. 1433–1444, Jun. 2021, doi: 10.1007/s00202-020-01170-9. Crossref

S. Kıvrak, T. Özer, and Y. Oğuz, “Design and implementation of dspic33fj32mc204 microcontroller–based asynchronous motor voltage/frequency speed control circuit for the ventilation systems of vehicles,” Meas. Control, vol. 52, no. 7–8, pp. 1039–1047, Sep. 2019, doi: 10.1177/0020294019858097. Crossref

O. A. Qudsi and S. D. Nugraha, “Desain dan implementasi pengaturan kecepatan motor bldc melalui pengaturan fluks,” INOVTEK - Seri Elektro, vol. 1, no. 1, p. 36, Dec. 2019, doi: 10.35314/ise.v1i1.1231. Crossref

K. Fathoni, “PERANCANGAN dan implementasi sistem kendali kecepatan motor magnet permanen tiga fasa sebagai motor arus searah tanpa sikat,” Institut Teknologi Bandung, 2014.

Z. Syroka, “A controller for brushless direct current electric motors. part 1. electrical and electronic design,” Tech. Sci., vol. 23, no. 2020, pp. 185–198, Dec. 2020, doi: 10.31648/ts.5695. Crossref

M. Wirandi, Safril, F. Sumasto, M. Agus, and F. Imansuri, “BLDC motor design by applying the control of direct current and analysis of loading mechanism soft starting,” IOP Conf. Ser. Mater. Sci. Eng., vol. 885, no. 1, p. 012005, Jul. 2020, doi: 10.1088/1757-899X/885/1/012005. Crossref

International Rectifier, “Datasheet ir2110(s)pbf/ir2113(s)pbf high and low side driver,” 2019. [Online]. Available: https://www.infineon.com/cms/en/product/power/gate-driver-ics/ir2110/

A. Stevanus, Y. Calvinus, and D. Santun Naga, “Simulation of brushless dc motor controller in sem electric car prototypes,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1007, no. 1, p. 012177, Dec. 2020, doi: 10.1088/1757-899X/1007/1/012177. Crossref

M. F. Bhuiyan, M. Rejwan Uddin, Z. Tasneem, M. Hasan, and K. M. Salim, “Design, code generation and simulation of a bldc motor controller usuuing pic microcontroller,” in 2018 Int. Conf. Recent Innov. Electr. Electron. Commun. Eng., Jul. 2018, pp. 1427–1431. doi: 10.1109/ICRIEECE44171.2018.9008910. Crossref

F. Rohman, N. Nurhadi, G. Gumono, M. E. Martawati, M. Z. Fanani, and D. S. Hormansyah, “Design and implementation of a 350-watt bldc motor driver using an insulated gate bipolar transistor (igbt),” IOP Conf. Ser. Mater. Sci. Eng., vol. 732, no. 1, p. 012097, Jan. 2020, doi: 10.1088/1757-899X/732/1/012097. Crossref

P. Astuti and H. Masdi, “Sistem kendali kecepatan motor bldc menggunakan pwm berbasis mikrokontroler arduino uno,” JTEIN J. Tek. Elektro Indones., vol. 3, no. 1, pp. 120–135, Jan. 2022, doi: 10.24036/jtein.v3i1.216. Crossref

L. Zhang, X. Yuan, X. Wu, C. Shi, J. Zhang, and Y. Zhang, “Performance evaluation of high-power sic mosfet modules in comparison to si igbt modules,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1181–1196, Feb. 2019, doi: 10.1109/TPEL.2018.2834345. Crossref

T.-Y. Ho, F.-T. Liu, G.-W. Ho, and Y.-R. Lin, “The implementation of a measurement system for brushless dc motor parameters,” Int. J. Green Energy, vol. 14, no. 12, pp. 983–995, Sep. 2017, doi: 10.1080/15435075.2017.1350184. Crossref

Đ. Lazarević, M. Živković, Đ. Kocić, and J. Ćirić, “The utilizing hall effect-based current sensor acs712 for true rms current measurement in power electronic systems,” Sci. Tech. Rev., vol. 72, no. 1, pp. 27–32, 2022, doi: 10.5937/str2201027L. Crossref

M. Pauzan and I. Yanti, “Penggunaan pin adc ( analog to digital converter ) pada mikrokontroler atmega8535 untuk menghasilkan catu daya digital,” ELKHA J. Tek. Elektro Untan, vol. 11, no. 2, pp. 122–127, 2019, doi: http://dx.doi.org/10.26418/elkha.v11i2.35036.

H. Wang, C. Li, G. Zhu, Y. Liu, and H. Wang, “Model-based design and optimization of hybrid dc-link capacitor banks,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 8910–8925, Sep. 2020, doi: 10.1109/TPEL.2020.2971830. Crossref

Y. Lee and J. Kim, “Analysis of bootstrap circuit operation with an inverted pwm drive scheme for a three-phase inverter for a brushless dc motor drive,” Can. J. Electr. Comput. Eng., vol. 42, no. 1, pp. 58–65, 2019, doi: 10.1109/CJECE.2019.2891850. Crossref

F. ISDARYANI, M. F. V. HESYA, and F. FERIYONIKA, “Sintesis kendali pid digital dengan diskritisasi langsung dan backward difference,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 467, Apr. 2021, doi: 10.26760/elkomika.v9i2.467. Crossref

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2023 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.