Determinants of Pepper Quality Based on the Percentage of Foreign Objects Based You Only Look Once (YOLO)
Abstract

Keywords
References
Nurdjannah, “Perbaikan mutu lada dalam rangka meningkatkan daya saing di pasar dunia,” J. Perspekt., vol. 5, no. 1, pp. 13–25, 2006.
N. O’Mahony et al., “Deep learning vs. traditional computer vision,” Adv. Intell. Syst. Comput., vol. 943, no. Cv, pp. 128–144, 2020, doi: 10.1007/978-3-030-17795-9_10. Crossref
Dina Gasong, Belajar dan Pembelajaran. Deepublish, 2018, 2018. [Online]. Available: Online
M. S. Dr. Yenny Suzana , M.Pd., Imam Jayanto, S.Farm., Teori Belajar & Pembelajaran. April 2021, 2021. [Online]. Available: Online
W. Fang, L. Wang, and P. Ren, “Tinier-yolo: a real-time object detection method for constrained environments,” IEEE Access, vol. 8, pp. 1935–1944, 2020, doi: 10.1109/ACCESS.2019.2961959. Crossref
J. Redmon and A. Farhadi, “YOLOv3: an incremental improvement,” 2018, [Online]. Available: Online
O. E. Karlina and D. Indarti, “Pengenalan objek makanan cepat saji pada video dan real time webcam menggunakan metode you look only once (yolo),” J. Ilm. Inform. Komput., vol. 24, no. 3, pp. 199–208, 2019, doi: 10.35760/ik.2019.v24i3.2362. Crossref
M. Harahap et al., “Sistem cerdas pemantauan arus lalu lintas dengan yolo (you only look once v3),” Semin. Nas. APTIKOM, p. 2019, 2019.
A. F. Fandisyah, N. Iriawan, and W. S. Winahju, “Deteksi kapal di laut indonesia menggunakan yolov3,” J. Sains dan Seni ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373520.v10i1.59312. Crossref
K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan modul deteksi objek manusia menggunakan metode yolo untuk mobile robot,” J. Tek. ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.61622. Crossref
C. Geraldy and C. Lubis, “Pendeteksian dan pengenalan jenis mobil menggunakan algoritma you only look once dan convolutional neural network,” J. Ilmu Komput. dan Sist. Inf., vol. 8, no. 2, p. 197, 2020, doi: 10.24912/jiksi.v8i2.11495. Crossref
A. Rohim, R. M. Harmie, and M. I. Nugraha, “Prosiding seminar nasional sistem pendeteksi buah lada berbasis,” 2021.
R. Huang, J. Pedoeem, and C. Chen, “YOLO-lite: a real-time object detection algorithm optimized for non-gpu computers,” Proc. - 2018 IEEE Int. Conf. Big Data, Big Data 2018, pp. 2503–2510, 2019, doi: 10.1109/BigData.2018.8621865. Crossref
S. Mane and P. S. Mangale, “Proceedings of the 2nd international conference on intelligent computing and control systems, iciccs 2018,” Proc. 2nd Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Iciccs, pp. 1809–1813, 2019.
B. Liu, W. Zhao, and Q. Sun, “Study of object detection based on faster r-cnn,” Proc. - 2017 Chinese Autom. Congr. CAC 2017, vol. 2017-Janua, pp. 6233–6236, 2017, doi: 10.1109/CAC.2017.8243900. Crossref
W. Liu et al., “SSD: Single Shot MultiBox Detector,” Computer Vision – ECCV 2016. Springer International Publishing, pp. 21–37, 2016. doi: 10.1007/978-3-319-46448-0_2. Crossref
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: unified, real-time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91. Crossref
T. Y. Lin et al., “Microsoft coco: common objects in context,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740–755, 2014, doi: 10.1007/978-3-319-10602-1_48. Crossref
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 National Research and Innovation Agency

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.