Compact Coplanar Waveguide Antenna Using Arm Patch for Software Defined Radio

  Nurul Fahmi Arief Hakim (1*), Silmi Ath Thahirah Al Azhima (2), Mariya Al Qibtiya (3)

(1) Department of Electrical Engineering Education, Universitas Pendidikan Indonesia - Indonesia - [ https://orcid.org/0000-0002-8258-6249 ]
(2) Department of Electrical Engineering Education, Universitas Pendidikan Indonesia - Indonesia
(3) Department of Electrical Engineering Education, Universitas Pendidikan Indonesia - Indonesia
(*) Corresponding Author

Received: December 30, 2022; Revised: April 11, 2023
Accepted: April 30, 2023; Published: August 31, 2023

How to cite (IEEE): N. F. Hakim, S. A. Azhima,  and M. A. Qibtiya, "Compact Coplanar Waveguide Antenna Using Arm Patch for Software Defined Radio," Jurnal Elektronika dan Telekomunikasi, vol. 23, no. 1, pp. 29-36, Aug. 2023. doi: 10.55981/jet.524


This article proposes a compact coplanar waveguide (CPW) antenna with a semicircular patch and patch arm above the feed line. The method used in this antenna research is experimental, with antenna parameter optimization, fabrication, and measurement steps. The antenna was 40 mm × 46 mm × 0.8 mm and was printed on an FR4 substrate. Antenna optimization was carried out with CST Studio Suite to obtain optimal results. Based on return loss measurement results, the proposed antenna has an operational frequency of 2 GHz–7 GHz. The antenna arm has a significant effect on the operational frequency of the antenna, as proven by a parameter study of the antenna arm. Parametric studies were carried out on the antenna by investigating the influence of geometric parameters on the frequency characteristics. Optimization results were printed then measured by a Vector Network Analyzer (VNA) and a spectrum analyzer. The fabricated CPW antenna has a wider operating frequency than the simulation. An omnidirectional radiation pattern was observed at 2 GHz–4 GHz. The antenna has been used as a transmitter and receiver at 2.4 GHz, 3 GHz, and 4 GHz. The antenna is able to receive the signal emitted from the signal generator.



Antenna; CPW; Software Defined Radio (SDR); UWB

Full Text:



Y. Dou, Z. Chen, J. Bai, Q. Cai, and G. Liu, “Two-port CPW-fed dual-band MIMO antenna for IEEE 802.11 a/b/G applications,” Int. J. Antennas Propag., vol. 2021, Jun. 2021, Art. No. 5572887, doi: 10.1155/2021/5572887. Crossref

A. H. Ilyasah, M. Hidayat, and S. U. Prini, “2×1 truncated corner microstrip array antenna to increase gain and bandwidth for LTE applications at 2.3 GHz frequency,” J. Elektr. Telekom., vol. 22, no. 1, pp. 14–22, Aug. 2022, doi: 10.55981/jet.436. Crossref

J. Wang, H. Wong, Z. Ji, and Y. Wu, “Broadband CPW-fed aperture coupled metasurface antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 3, pp. 517–520, Mar. 2019, doi: 10.1109/LAWP.2019.2895618. Crossref

T. Liu, Y. Sun, J. Li, J. Yu, and K. Wang, “CPW- fed compact multiband monopole antenna for WLAN/WiMAX /X-Band application,” Prog. Electromagn. Res. Lett., vol. 87, pp. 105–113, Oct. 2019, doi: 10.2528/PIERL19080902. Crossref

F. Ouberri, A. Tajmouati, I. Zahraoui, A. Lakhssassi, M. Latrach, and R. Er-Rebyiy, “A novel wideband cpw-fed square aperture monopole antenna with inverted-l grounded strips for wireless and satellite applications,” in Proc. 2020 IEEE 2nd Int. Conf. on Electron., Control, Optim. And Comput. Sci. (ICECOCS), Dec. 2020, doi: 10.1109/ICECOCS50124.2020.9314499. Crossref

S. Ullah, I. Ahmad, Y. Raheem, S. Ullah, T. Ahmad, and U. Habib, “Hexagonal shaped CPW Feed based Frequency Reconfigurable Antenna for WLAN and Sub-6 GHz 5G applications,” in Proc. 2020 Int. Conf. Emerging Trends in Smart Technol. (ICETST), Apr. 2020, doi: 10.1109/ICETST49965.2020.9080688. Crossref

K. -L. Wong, H. -J. Chang, C. -Y. Wang, and S. -Y. Wang, “Very- low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 213–217, Jan. 2020, doi: 10.1109/LAWP.2019.2958961. Crossref

K.-L. Wong, Compact and Broadband Microstrip Antennas. New York, NY, USA: J. Wiley, 2002.

U. L. Rohde, J. C. Whitaker, and H. Zahod, Communications Receivers: Principles and Design. New York, NY, USA: McGraw-Hill, 2018.

N. F. A. Hakim and I. Kustiawan, “Experimental study of FM complex differentiation using HackRF,” in Proc. 2021 Int. Res. Symp. Adv. Eng. And Vocational Educ. (IRSAEVE), Nov. 2021, pp. 10–13, doi: 10.1109/IRSAEVE52613.2021.9604018. Crossref

I. Martoyo, P. Setiasabda, H. Y. Kanalebe, H. P. Uranus, and M. Pardede, “Software defined radio for education: spectrum analyzer, FM receiver/transmitter and GSM sniffer with HackRF One,” in Proc. 2018 2nd Borneo Int. Conf. Appl. Math. And Eng. (BICAME), Dec. 2018, pp. 188–192, doi: 10.1109/BICAME45512.2018.1570509150. Crossref

G. Avdeyenko, “Application of Nuand BladeRF x40 SDR Transceiver for Generating Television Signals of DVB-S2 Standard,” in Proc. 2019 Int. Conf. Inf. And Telecommun. Technol. And Radio Electron. (UkrMiCo), Sep. 2019, doi: 10.1109/UkrMiCo47782.2019.9165515. Crossref

R. Glazkov, D. M. Yurackov, and V. V. Moshkov, “GNU Radio Based RDS Transceiver for Data Communication,” in Proc. 2020 IEEE Conf. Russian Young Researchers Electrical and Electron. Eng. (EIConRus), Jan. 2020, pp. 21–23, doi: 10.1109/EIConRus49466.2020.9039319. Crossref

A. Martian, C. Vladeanu, and I. Marghescu, “Novel software defined radio testbed for spectrum occupancy measurements,” in Proc. 2020 Int. Symp. Electron. And Telecom. (ISETC), Nov. 2020, pp. 1-4, doi: 10.1109/ISETC50328.2020.9301075. Crossref

M. B. Khan, M. Rehman, A. Mustafa, R. A. Shah, and X. Yang, “Intelligent non-contact sensing for connected health using software defined radio technology,” Electronics, vol. 10, no. 13, Jun. 2021, Art. No. 1558, doi: 10.3390/electronics10131558. Crossref

V. Dear, A. Purwono, I. Iskandar, A. Kurniawan, and P. Abadi. “Design of sliding correlator channel sounder for ionospheric channel probing based on software define radio.” Buletin Pos dan Telekomunikasi, vol. 19, no. 1, pp. 1-14, Sep. 2021, doi: 10.17933/bpostel.2021.190101. Crossref

T. Puklibmoung and W. Sa-Ngiamvibool, “Design and fabrication of broad-beam microstrip antenna using parasitic patches and cavity-backed slot coupling,” Appl. Syst. Innov., vol. 5, no. 2, Feb. 2022, Art. no. 31, doi: 10.3390/asi5020031. Crossref

M. Fartookzadeh and S. H. Mohseni Armaki, “Efficiency improvement and cross-polarization reduction of single-fed frequency-scan leaky wave microstrip antennas by using an M-shape metasurface as the WAIM Layer,” AEU - Int. J. Electron. Commun., vol. 116, Mar. 2020, Art. no. 153057, doi: 10.1016/j.aeue.2019.153057. Crossref

M. M. Alam, R. Azim, N. M. Sobahi, A. I. Khan, and M. T. Islam, “A dual-band CPW-fed miniature planar antenna for S-, C-, WiMAX, WLAN, UWB, and X-band applications,” Sci. Rep., vol. 12, May 2022, Art. no. 7584, doi: 10.1038/s41598-022-11679-7. Crossref

J. M. Percaz et al., “Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 873–876, Sep. 2015, doi: 10.1109/LAWP.2015.2478595. Crossref

C. Zebiri et al., “Aperture-coupled asymmetric dielectric resonator antenna with slotted microstrip line for enhanced ultrawideband,” in Proc. 2016 10th European Conf. Antennas and Propag. (EuCAP), Apr. 2016, doi: 10.1109/EuCAP.2016.7481393. Crossref

A. R. Anu, P. Abdulla, T. K. Rekha, A. Iqubal, U. S. Kollannore, and P. M. Jasmine, “Bandwidth Enhancement of Aperture Coupled Cylindrical Dielectric Resonator Antenna using Modified Feed Structure,” in Proc. 2019 IEEE Region 10 Conf. (TENCON), Oct. 2019, pp. 1910–1912, doi: 10.1109/TENCON.2019.8929466. Crossref

A T. Yasin and R. Baktur, “Bandwidth enhancement of meshed patch antennas through proximity coupling,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2501–2504, Jul. 2017, doi: 10.1109/LAWP.2017.2726562. Crossref

R. Del-Rio-Ruiz, J. -M. Lopez-Garde, J. Legarda, O. Caytan, and H. Rogier, “A combination of transmission line models as design instruments for electromagnetically coupled microstrip patch antennas in the 2.45 GHz ISM band,” IEEE Antennas Wirel. Propag. Lett., vol. 69, no. 1, pp. 550–555, Jan. 2021, doi: 10.1109/TAP.2020.3001668. Crossref

A. Ullah, N. O. Parchin, R. A. Abd-Alhameed, and P. S. Excell, “Coplanar waveguide antenna with defected ground structure for 5G millimeter wave communications,” in Proc. 2019 2nd IEEE Middle East and North Africa COMMun. Conf., Nov. 2019, pp. 1-4, doi: 10.1109/MENACOMM46666.2019.8988584. Crossref

H. S. N. Rahkmi, S. A. T. Al Azhima, M. Al Qibtiya, and N. F. A. Hakim, “Modification of CPW antenna using various slot shapes for wireless communication system,” in Proc. 2022 Int. Conf. Comput. Eng. Netw. and Intell. Multimedia (CENIM), Nov. 2022, pp. 317–320, doi: 10.1109/CENIM56801.2022.10037289. Crossref

Y. Zhang, S. Li, Z. Q. Yang, X. Y. Qu, and W. H. Zong, “A coplanar waveguide‐fed flexible antenna for ultra‐wideband applications,” Int. J. RF Microw. C. E., vol. 30, no. 8, Aug. 2020, Art. no. e22258, doi: 10.1002/mmce.22258. Crossref

M. Cetin and L. Alatan, “A novel input impedance computation method for coaxial probe fed microstrip antennas by utilizing characteristic modes,” in Proc. 2017 IEEE Int. Symp. Antennas and Propag. & USNC/URSI Nat. Radio Sci. Meeting, Jul. 2017, pp. 947–948, doi: 10.1109/APUSNCURSINRSM.2017.8072516. Crossref

J. Sun and K. -M. Luk, “A fully transparent wideband water patch antenna with L-shaped feed,” IEEE Open J. Antennas Propag., vol. 2, pp. 968–975, Sep. 2021, doi: 10.1109/OJAP.2021.3111700. Crossref

S. Patil, A. K. Singh, B. K. Kanaujia, and R. L. Yadava, “Design of inclined coupling slot loaded CPW-fed circularly polarized slot antenna for wireless applications,” Electromagnetics, vol. 38, no. 4, pp. 226–235, Mar. 2018, doi: 10.1080/02726343.2018.1457270. Crossref

D. G. Fang, Antenna Theory and Microstrip Antennas. CRC Press, 2019.

A. Munir, I. Novianti, and B. Hasanah, “Experimental investigation of ADM-based microstrip square patch antenna with resonant frequency lowering characteristic,” in Proc. 2020 Int. Workshop Antenna Technol. (iWAT), Feb. 2020, pp. 89-92, doi: 10.1109/iWAT48004.2020.1570615575. Crossref

M. Gupta, S. Sachdeva, N. K. Swamy, and I. P. Singh, “Rectangular microstrip patch antenna using air as substrate for S-band communication,” J. Electromagn. Anal. Appl., vol. 06, no. 03, pp. 38–41, Feb. 2014, doi: 10.4236/jemaa.2014.63006. Crossref

M. Khan and D. Chatterjee, “Characteristic mode analysis of a class of empirical design techniques for probe-fed, U-slot microstrip patch antennas,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2758–2770, Jul. 2016, doi: 10.1109/TAP.2016.2556705. Crossref

P. Mathur, M. Chattopadhyay, and G. Kumar, “Non-radiating edge gap coupled capsule-shaped and nose-shaped microstrip antennas for 3G applications,” Int. J. Future Comput. Commun., vol. 3, no. 2, pp. 80–83, Apr. 2014, doi: 10.7763/IJFCC.2014.V3.272. Crossref

Devi, P. Kalapna, and Aparna Shekar, “Design of frequency reconfigurable antenna for SDR application,” in Proc. 2020 7th Int. Conf. Smart Struct. and Syst. (ICSSS), Jul. 2020, pp. 1-5, doi: 10.1109/ICSSS49621.2020.9202201. Crossref

D. Patron and K. R. Dandekar, “Planar reconfigurable antenna with integrated switching control circuitry,” in Proc. 8th European Conf. Antennas and Propag. (EuCAP 2014), Apr. 2014, pp. 2737–2740, doi: 10.1109/EuCAP.2014.6902391. Crossref

A. A. Ibrahim, W. A. E. Ali, and H. Aboushady. “Performance evaluation of SDR blade RF using wide-band monopole antenna for spectrum sensing applications,” Appl. Comput. Electromagn. Soc., vol. 36, no. 4, pp. 419–424, Apr. 2021, doi: 10.47037/2020.ACES.J.360407. Crossref

K. L. Chung, H. Tian, S. Wang, B. Feng, and G. Lai. “Miniaturization of microwave planar circuits using composite microstrip/coplanar-waveguide transmission lines,” Alex. Eng. J., vol. 61, no. 11, pp. 8933–8942, Nov. 2022, doi: 10.1016/j.aej.2022.02.027. Crossref

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2023 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.