Web
Analytics

Comparison of Different Models to Estimate Global Solar Irradiation in the Sudanese Zone of Chad

  Marcel Hamda Soulouknga (1), Hasan Huseyin Coban (2*), Ruben Zieba Falama (3), Fabrice Kwefeu Mbakop (4), Noel Djongyang (5)

(1) Higher Normal School of Technical Education of Sarh, University of Sarh - Chad orcid
(2) Department of Electrical Engineering, Ardahan University - Turkey orcid
(3) Higher National School of Mines and Petroleum Industries, University of Maroua - Cameroon orcid
(4) Department of Renewable Energy, National Advanced Polytechnic School, University of Maroua - Cameroon orcid
(5) Department of Renewable Energy, National Advanced Polytechnic School, University of Maroua - Cameroon orcid
(*) Corresponding Author

Received: October 16, 2022; Revised: November 06, 2022
Accepted: November 10, 2022; Published: December 31, 2022


How to cite (IEEE): M. Soulouknga, H. H. Coban, R. Falama, F. Mbakop,  and N. Djongyang, "Comparison of Different Models to Estimate Global Solar Irradiation in the Sudanese Zone of Chad," Jurnal Elektronika dan Telekomunikasi, vol. 22, no. 2, pp. 63-71, Dec. 2022. doi: 10.55981/jet.508

Abstract

Sustainable future development relies on solar radiation, which is the main source of renewable energy. Thus, in this article, the monthly average global solar irradiation of four sites in the Sudanian zone region of Chad is estimated using different empirical models. The data used in this study were collected at the General Directorate of Meteorology of Chad. The reliability and accuracy of six models estimating global solar radiation were validated and compared by statistical indicators identifying the most accurate model. The results obtained show that the Allen model has the best performance for the Moundou site (5.760 kWh/m²/d, R2=0.843), the Angstrom Prescott model for the Sarh sites (5.658 kWh/m²/d, R2=0.805) and Pala (5.793 kWh/m²/d, R²=0.889), the Sabbagh model for the Bongor site (5.657 kWh/m²/d, R²=0.888). These models are validated against NASA data. The results show that the Sudanian zone of Chad has good solar potential and is therefore suitable for possible exploitation.


  http://dx.doi.org/10.55981/jet.508

Keywords


renewable energy; empirical models; statistical indicators; solar radiation; Sudanese zone.

Full Text:

  PDF

References


B. Brahma and R. Wadhvani, “Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data,” Symmetry., vol. 12, no. 11, p. 1830, Nov. 2020, doi: 10.3390/sym12111830. Crossref

S. E. Berrizbeitia, E. Jadraque Gago, and T. Muneer, “Empirical Models for the Estimation of Solar Sky-Diffuse Radiation. A Review and Experimental Analysis,” Energies, vol. 13, no. 3, p. 701, Feb. 2020, doi: 10.3390/en13030701. Crossref

R. A. Rajagukguk, R. A. A. Ramadhan, and H.-J. Lee, “A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power,” Energies, vol. 13, no. 24, p. 6623, Dec. 2020, doi: 10.3390/en13246623. Crossref

G. E. Hassan, M. E. Youssef, M. A. Ali, Z. E. Mohamed, and A. I. Shehata, “Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt,” J. Atmos. Sol. Terr. Phys., vol. 149, pp. 69–80, Nov. 2016, doi: 10.1016/j.jastp.2016.09.011. Crossref

D. Guijo-Rubio et al., “Evolutionary artificial neural networks for accurate solar radiation prediction,” Energy J., vol. 210, p. 118374, Nov. 2020, doi: 10.1016/j.energy.2020.118374. Crossref

T. Ahmad and H. Chen, “A review on machine learning forecasting growth trends and their real-time applications in different energy systems,” Sustain. Cities Soc., vol. 54, p. 102010, Mar. 2020, doi: 10.1016/j.scs.2019.102010. Crossref

J. Fan, B. Chen, L. Wu, F. Zhang, X. Lu, and Y. Xiang, “Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions,” Energy J., vol. 144, pp. 903–914, Feb. 2018, doi: 10.1016/j.energy.2017.12.091. Crossref

S. G. Gouda, Z. Hussein, S. Luo, and Q. Yuan, “Model selection for accurate daily global solar radiation prediction in China,” J. Clean. Prod., vol. 221, pp. 132–144, Jun. 2019, doi: 10.1016/j.jclepro.2019.02.211. Crossref

K. Samy A, A M Shaffle, and A. H A S, “Comparative and Evaluate of Empirical Models for Estimation Global Solar Radiation in Al-Baha, KSA,” J. Earth Sci. Clim. Chang., vol. 09, no. 09, 2018, doi: 10.4172/2157-7617.1000492. Crossref

O. M. Bamigbola and S. E. Atolagbe, “Empirical Models for Predicting Global Solar Radiation on the African Continent Based on Factors of Location and Season,” Open J. Model. Simul., vol. 09, no. 01, pp. 59–73, 2021, doi: 10.4236/ojmsi.2021.91004. Crossref

T. A. Woldegiyorgis, A. Admasu, N. E. Benti, and A. A. Asfaw, “A Comparative Evaluation of Artificial Neural Network and Sunshine Based models in prediction of Daily Global Solar Radiation of Lalibela, Ethiopia,” Cogent Eng., vol. 9, no. 1, Dec. 2022, doi: 10.1080/23311916.2021.1996871. Crossref

M. H. Soulouknga, O. Coulibaly, S. Y. Doka, and T. C. Kofane, “Evaluation of global solar radiation from meteorological data in the Sahelian zone of Chad,”, Renew. Wind. Water, Sol., vol. 4, no. 1, p. 4, Dec. 2017, doi: 10.1186/s40807-017-0041-0. Crossref

F. Wang et al., “A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model,” Energy Convers. Manag., vol. 220, p. 113075, Sep. 2020, doi: 10.1016/j.enconman.2020.113075. Crossref

Solar resource maps of Chad, The World Bank Solar resource data: Solargis, Glob. Sol. Atlas 2.0, 2022. [Online]. Available: https://solargis.com/maps-and-gis-data/download/chad.

D. V. S. K. Rao K, M. Premalatha, and C. Naveen, “Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study,” Renew. Sustain. Energy Rev., vol. 91, pp. 248–258, Aug. 2018, doi: 10.1016/j.rser.2018.03.096. Crossref

K. Skeiker, “Correlation of global solar radiation with common geographical and meteorological parameters for Damascus province, Syria,” Energy Convers. Manag., vol. 47, no. 4, pp. 331–345, Mar. 2006, doi: 10.1016/j.enconman.2005.04.012. Crossref

A. A. El-Sebaii, A. A. Al-Ghamdi, F. S. Al-Hazmi, and A. S. Faidah, “Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia,” Energy Policy, vol. 37, no. 9, pp. 3645–3649, Sep. 2009, doi: 10.1016/j.enpol.2009.04.038. Crossref

S. Kirmani, M. Jamil, and M. Rizwan, “Empirical correlation of estimating global solar radiation using meteorological parameters,” Int. J. Sustain. Energy, vol. 34, no. 5, pp. 327–339, May 2015, doi: 10.1080/14786451.2013.826222. Crossref

M. N. I. Sarkar, “Estimation of solar radiation from cloud cover data of Bangladesh,” Renew. Wind. Water, Sol., vol. 3, no. 1, p. 11, Dec. 2016, doi: 10.1186/s40807-016-0031-7. Crossref

T. R. Ayodele and A. S. O. Ogunjuyigbe, “Prediction of monthly average global solar radiation based on statistical distribution of clearness index,” Energy J., vol. 90, pp. 1733–1742, Oct. 2015, doi: 10.1016/j.energy.2015.06.137. Crossref

P. I. Cooper, “The absorption of radiation in solar stills,” Sol. Energy, vol. 12, no. 3, pp. 333–346, 1969, doi: 10.1016/0038-092X(69)90047-4. Crossref

A. A. M. Sayigh, Solar Energy Engineering. London, UK: Academic Press, INC, 1977. doi: 10.1016/B978-0-12-620850-4.X5001-7. Crossref

G. H. Hargreaves and Z. A. Samani, “Estimating Potential Evapotranspiration,” J. Irrig. Drain. Div., vol. 108, no. 3, pp. 225–230, Sep. 1982, doi: 10.1061/JRCEA4.0001390. Crossref

R. G. Allen, “Self-Calibrating Method for Estimating Solar Radiation from Air Temperature,” J. Hydrol. Eng., vol. 2, no. 2, pp. 56–67, Apr. 1997, doi: 10.1061/(ASCE)1084-0699(1997)2:2(56). Crossref

J. A. Sabbagh, A. A. M. Sayigh, and E. M. A. El-Salam, “Estimation of the total solar radiation from meteorological data,” Sol. Energy, vol. 19, no. 3, pp. 307–311, 1977, doi: 10.1016/0038-092X(77)90075-5. Crossref

A. J., J. N., B. N., and A. R., “Software for missing data error analysis of Penman-Monteith reference evapotranspiration,” Irrig. Sci., vol. 21, no. 2, pp. 57–67, Mar. 2002, doi: 10.1007/s002710100047. Crossref

A. K. Katiyar and C. K. Pandey, “A Review of Solar Radiation Models—Part I,” J. Renew. Energy, vol. 2013, pp. 1–11, 2013, doi: 10.1155/2013/168048. Crossref

M.-F. Li, X.-P. Tang, W. Wu, and H.-B. Liu, “General models for estimating daily global solar radiation for different solar radiation zones in mainland China,” Energy Convers. Manag., vol. 70, pp. 139–148, Jun. 2013, doi: 10.1016/j.enconman.2013.03.004. Crossref

R. J. Stone, “Improved statistical procedure for the evaluation of solar radiation estimation models,” Sol. Energy, vol. 51, no. 4, pp. 289–291, Oct. 1993, doi: 10.1016/0038-092X(93)90124-7. Crossref

M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic, “Review and statistical analysis of different global solar radiation sunshine models,” Renew. Sustain. Energy Rev., vol. 52, pp. 1869–1880, Dec. 2015, doi: 10.1016/j.rser.2015.08.035. Crossref

O. Behar, A. Khellaf, and K. Mohammedi, “Comparison of solar radiation models and their validation under Algerian climate – The case of direct irradiance,” Energy Convers. Manag., vol. 98, pp. 236–251, Jul. 2015, doi: 10.1016/j.enconman.2015.03.067. Crossref

O. O. Ajayi, O. D. Ohijeagbon, C. E. Nwadialo, and O. Olasope, “New model to estimate daily global solar radiation over Nigeria,” Sustain. Energy Technol. Assess., vol. 5, pp. 28–36, Mar. 2014, doi: 10.1016/j.seta.2013.11.001. Crossref

N. Ghazouani et al., “Performance Evaluation of Temperature-Based Global Solar Radiation Models—Case Study: Arar City, KSA,” Sustainability, vol. 14, no. 1, p. 35, Dec. 2021, doi: 10.3390/su14010035. Crossref

G. Grillone, C. Agnese, and F. D’Asaro, “Estimation of Daily Solar Radiation from Measured Air Temperature Extremes in the Mid-Mediterranean Area,” J. Irrig. Drain. Eng., vol. 138, no. 10, pp. 939–947, Oct. 2012, doi: 10.1061/(ASCE)IR.1943-4774.0000480. Crossref


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.