Web
Analytics

The Optical Characteristics of 20 Watt Far-UVC Light and Its Application for Disinfection Chamber

  Nidya Chitraningrum (1*), Yusuf Nur Wijayanto (2), Hana Arisesa (3), Indra Sakti (4), Dadin Mahmudin (5), Budi Prawara (6), Deni Permana Kurniadi (7), Pamungkas Daud (8)

(1) Research Center for Biomass and Bioproduct, National Research and Innovation Agency - Indonesia
(2) Research Center for Electronics, National Research and Innovation Agency - Indonesia
(3) Faculty of Electrical Engineering, Universiti Teknologi Malaysia - Malaysia
(4) Faculty of Electrical Engineering, Universiti Teknologi Malaysia - Malaysia
(5) Faculty of Electrical Engineering, Universiti Teknologi Malaysia - Malaysia
(6) Research Organization of Electronics and Informatics, National Research and Innovation Agency - Indonesia
(7) Research Center for Telecommunication, National Research and Innovation Agency - Indonesia
(8) Research Center for Telecommunication, National Research and Innovation Agency - Indonesia
(*) Corresponding Author

Received: September 20, 2022; Revised: October 24, 2022
Accepted: November 01, 2022; Published: December 31, 2022


How to cite (IEEE): N. Chitraningrum, Y. N. Wijayanto, H. Arisesa, I. Sakti, D. Mahmudin, B. Prawara, D. P. Kurniadi,  and P. Daud, "The Optical Characteristics of 20 Watt Far-UVC Light and Its Application for Disinfection Chamber," Jurnal Elektronika dan Telekomunikasi, vol. 22, no. 2, pp. 57-62, Dec. 2022. doi: 10.55981/jet.502

Abstract

The far-ultraviolet C (UVC) light has been used recently as an alternative disinfection system to deactivate the novel coronaviruses that cause coronavirus disease (COVID-19) without introducing any health damage to humans. We investigate that the far-UVC light from far-UVC excimer lamps (BEST 20 Watt) is a promising candidate for a far-UVC disinfection system to prevent human-to-human transmission of COVID-19. The optical characterization of far-UVC excimer lamps was examined. The maximum irradiance of the far-UVC excimer lamps is 219 nm, which is known to have antimicrobial capabilities on microorganisms, including coronaviruses. We propose a design of a disinfection chamber system based on eight 219 nm far-UVC excimer lamps which are attached vertically about 35 cm to each other, and the irradiation angle was installed at the angle of approximately 120° in order to optimize the irradiation of far-UVC light to a human body. For microorganism inactivation at a distance of around 10 cm from the human body, 219 nm far-UVC excimer lamps requires less than 5 s of irradiation time and the required intensity of 840 mW/cm2 at a low dose of 3000 mJ/cm2. We recommend that our proposed disinfection chamber can be used for humans and applied in public areas to decrease the spread of COVID-19 without any adverse health effect.


  http://dx.doi.org/10.55981/jet.502

Keywords


COVID-19; disinfection chamber; far-UVC; optical characteristics

Full Text:

  PDF

References


World Health Organization. “COVID-19 - Japan - (ex-China).” who.int. https://www.who.int/csr/don/16-january-2020-novel-coronavirus-japan-ex-china/en/ (accessed May 22, 2021).

World Health Organization. “Novel Coronavirus – Thailand (ex-China).” who.int. https://www.who.int/csr/don/14-january-2020-novel-coronavirus-thailand/en/ (accessed May 22, 2021).

World Health Organization. “COVID-19 - Republic of Korea - (ex-China).” who.int. https://www.who.int/csr/don/21-january-2020-novel-coronavirus-republic-of-korea-ex-china/en/ (accessed May 22, 2021).

Centers for Disease Control and Prevention. “First Travel-related Case of 2019 Novel Coronavirus Detected in United States.” cdc.gov. https://www.cdc.gov/media/releases/2020/p0121-novel-coronavirus-travel-case.html (accessed May 22, 2021).

World Health Organization. “Novel Coronavirus – Indonesia.” https://cdn.who.int/media/docs/default-source/searo/indonesia/covid19/who-indonesia-situation-report-1 (accessed May 22, 2021).

T. P. Velavan and C. G. Meyer, “The COVID-19 epidemic,” Trop. Med. Int. Health., vol. 25, no. 3, pp. 278–280, Mar. 2020, doi: 10.1111/tmi.13383. Crossref

World Health Organization. “Coronavirus disease (COVID-19): How is it transmitted?.” who.int. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (accessed May 22, 2021).

N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, and V. J. Munster, “Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1,” N. Engl. J. Med., vol. 382, no. 16, pp. 1564–1567, Apr. 2020, doi: 10.1056/NEJMc2004973. Crossref

F. García-Ávila, L. Valdiviezo-Gonzales, M. Cadme-Galabay, H. Gutiérrez-Ortega, L. Altamirano-Cárdenas, C. Zhindón-Arévalo, and L. F. del Pino, “Consideration on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community,” Case Stud. Chem. Environ. Eng., vol. 2, Sept. 2020, Art. no. 100049, doi: 10.1016/j.cscee.2020.100049. Crossref

A. J. Roncoroni, M. W. Casewell, and I. Phillips, “The disinfection of clinically contaminated Matburn suction pumps and baby incubators in an 'Aseptor' formalin cabinet,” J. Hosp. Infect., vol. 1, no. 3, pp. 251–259, Sept. 1980, doi: 10.1016/0195-6701(80)90063-8. Crossref

N. J. Ehrenkranz, E. A. Bolyard, M. Wiener, and T. J. Cleary, “Antibiotic-sensitive Serratia marcescens infections complicating cardiopulmonary operations: contaminated disinfectant as a reservoir,” Lancet., vol. 316, no. 8207, pp. 1289–1292, Dec. 1980, doi: 10.1016/s0140-6736(80)92349-1. Crossref

C. Pecquet, A. Pradalier, and J. Dry, “Allergic contact dermatitis from ethanol in a transdermal estradiol patch,” Contact Dermatitis, vol. 27, no. 4, pp. 275–276, Oct. 1992, doi: 10.1111/j.1600-0536.1992.tb03276.x. Crossref

M. L. Casey, B. Hawley, N. Edwards, J. M. Cox-Ganser, and K. J. Cummings, “Health problems and disinfectant product exposure among staff at a large multispecialty hospital,” Am. J. Infect. Control, vol. 45, no. 10, pp. 1133-1138, Oct. 2017, doi: 10.1016/j.ajic.2017.04.003. Crossref

J. M. Moon, B. J. Chun, and Y. I. Min, “Hemorrhagic gastritis and gas emboli after ingesting 3% hydrogen peroxide,” J. Emerg. Med., vol. 30, no. 4, pp. 403–406, May 2006, doi: 10.1016/j.jemermed.2005.05.036. Crossref

C. Schyllert, E. Rӧnmark, M. Andersson, U. Hedlund, B. Lundbӓck, L. Hedman, and A. Lindberg, “Occupational exposure to chemicals drives the increased risk of asthma and rhinitis observed for exposure to vapours, gas, dust, and fumes: a cross-sectional population-based study,” Occup. Environ. Med., vol. 73, no. 10, pp. 663–669, Oct. 2016, doi: 10.1136/oemed-2016-103595. Crossref

C. M. Walker and G. Ko, “Effect of ultraviolet germicidal irradiation on viral aerosols,” Environ. Sci. Technol., vol. 41, no. 15, pp. 5460–5465, June 2007, doi: 10.1021/es070056u. Crossref

W. Kowalski, Ultraviolet Germicidal Irradiation Handbook UVGI for Air and Surface Disinfection. Berlin Heidelber, Germany: Springer Verlag, 2009.

E. I. Budowsky, S. E. Bresler, E. A. Friedman, and N. V. Zheleznova, “Principles of selective inactivation of viral genome. I. UV-induced inactivation of influenza virus,” Arch. Virol., vol. 68, pp. 239–247, Sep. 1981, doi: 10.1007/BF01314577. Crossref

J. C. Rubio-Romero, M. del C. Pardo-Ferreira, J. A. Torrecilla-García, and S. Calero-Castro, “Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic,” Safety Sci., vol. 129, Art. no. 104830, Sep. 2020, doi: 10.1016/j.ssci.2020.104830. Crossref

J. G. Jose and D. G. Pitts, “Wavelength dependency of cataracts in albino mice following chronic exposure,” Exp. Eye Res., vol. 41, no. 4, pp. 545–563, Oct. 1985, doi: 10.1016/S0014-4835(85)80011-7. Crossref

G. P. Pfeifer and A. Besaratinia, “UV wavelength dependent DNA damage and human non-melanoma and melanoma skin cancer,” Photochem. Photobiol. Sci., vol. 11, no. 1, pp. 90–97, Jan. 2012, doi: 10.1039/c1pp05144j. Crossref

K. Narita, K. Asano, Y. Morimoto, T. Igarashi, M. R. Hamblin, T. Dai, and A. Nakane, “Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds,” J. Photochem. Photobiol. B Biol., vol. 178, pp. 10–18, Jan. 2018, doi: 10.1016/j.jphotobiol.2017.10.030. Crossref

H. Kitagawa, T. Nomura, T. Nazmul, K. Omori, N. Shigemoto, T. Sakaguchi, and H. Ohge, “Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination,” Am. J. Infect. Control, vol. 49, no. 3, pp. 299–301, Mar. 2021, doi: 10.1016/j.ajic.2020.08.022. Crossref

S. Kaidzu, K. Sugihara, M. Sasaki, A. Nishiaki, T. Igarashi, and M. Tanito, “Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague-Dawley rats,” Free Radic. Res., vol. 53, no. 6, pp. 611–617, Jun. 2019, doi: 10.1080/10715762.2019.1603378. Crossref

W. J. Kowalski, W. P. Bahnfleth, and M. T. Hernandez, “A genomic model for predicting the ultraviolet susceptibility of viruses,” Int. Ultraviolet Assoc. News, vol. 11, no. 2, pp. 15–28, Jan. 2009.

M. H. Simanjuntak. “Aman beraktifitas dari COVID-19 di bawah sinar Far UVC.” antaranews.com. https://www.antaranews.com/berita/2035462/aman-beraktivitas-dari-covid-19-di-bawah-sinar-far-uvc (accessed Oct. 17, 2022).

A. G. Buchan, L. Yang, D. Welch, D. J. Brenner, and K. D. Atkinson, “Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code,” Sci. Rep., vol. 11, Oct. 2021, Art. no. 19930, doi: 10.1038/s41598-021-99204-0. Crossref

T. P. Sun, C. T. Huang, P. W. Lui, Y. T. Chen, and H. L. Shieh, “Novel measurement system for linier array type UVC germicidal system”, in Proc. 2019 IEEE Eurasia Conf. Biomed. Eng., Healthcare Sustain., pp. 57–60, Aug. 2019, doi: 10.1109/ECBIOS.2019.8807886. Crossref

E. Eadie, W. Hiwar, L. Fletcher, E. Tidswell, P. O. Mahoney, M. Buonanno, D. Welch, C. S. Adamson, D. J. Brenner, C. Noakes, and K. Wood, “Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber,” Sci. Rep., vol. 12, Mar. 2022, Art. no. 4373, doi: 10.1038/s41598-022-08462-z. Crossref

D. Welch, M. Buonanno, A. G. Buchan, L. Yang, K. D. Atkinson, I. Shuryak, and D. J. Brenner, “Inactivation rates for airborne human coronavirus by low doses of 222 nm far-UVC radiation,” Viruses, vol. 14, no. 4, Mar. 2022, Art. no. 684, doi: 10.3390/v14040684. Crossref

IO. “UI’s rapid disinfecting booth ready for public access.” observerid.com. https://observerid.com/uis-rapid-disinfecting-booth-ready-for-public-access/ (accessed May 30, 2021).

American Conference of Governmental Industrial Hygienists, Ultraviolet radiation: TLV® physical agents 7th edition documentation.” US: ACGIH, 2013.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 National Research and Innovation Agency

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.