Customer Decision Prediction Using Deep Neural Network on Telco Customer Churn Data
Abstract

Keywords
References
H. N. Irmanda, R. Astriratma, And S. Afrizal, "Perbandingan Metode Jaringan Syaraf Tiruan Dan Pohon Keputusan Untuk Prediksi Churn," J. Sist. Inf., Vol. 11, No. 2, Pp. 1817–1825, 2019. Crossref
D. R. Chabumba, R. Ajoodha, and A. Jadhav, "Predicting telecommunication customer churn using machine learning techniques," in Proc. Int. Conf. Interdisciplinary Research in Technology and Management, Feb. 2021.
Y. T. Utami, D. A. Shofiana, and Y. Heningtyas, “Penerapan algoritma C4.5 untuk prediksi churn rate pengguna jasa telekomunikasi,” J. Komputasi, vol. 8, no. 2, pp. 69–76, 2020, doi: 10.23960%2Fkomputasi.v8i2.2647. Crossref
Yulianti, “Metode data mining untuk prediksi churn pelanggan,” ICT Akad. Telkom, vol. 9, no. 16, pp. 46–52, 2018.
I. M. M. Mitkees, S. M. Badr, A. I. B. ElSeddawy, “Customer churn prediction model using data mining techniques,” 2017 13th Int. Computer Engineering Conf., 2017, pp. 262–268, DOI: 10.1109/ICENCO.2017.8289798. Crossref
A. S. Halibas, A. C. Matthew, I. G. Pillai, J. H. Reazol, E. G. Delvo, and L. B. Reazol, “Determining the intervening effects of exploratory data analysis and feature engineering in telecoms customer churn modeling,” 2019 4th Middle East College Int. Conf. Big Data Smart City, 2019, doi: 10.1109/ICBDSC.2019.8645578. Crossref
N. W. Wardani et al., “Prediksi customer churn dengan algoritma decision tree C4.5 berdasarkan segmentasi pelanggan untuk mempertahankan pelanggan pada perusahaan retail,” Rekayasa Sist. Komput., vol. 1, no. 1, pp. 16–24, 2018, doi: 10.31598/jurnalresistor.v1i1.219. Crossref
K. Kim and J. Lee, “Bayesian optimization of customer churn predictive model,” 2018 Joint 10th Int. Conf. Soft Comput. Intell. Syst. and 19th Int. Symp. Adv. Intell. Syst., 2018, pp. 85–88, doi: 10.1109/SCIS-SIS.2018.00024. Crossref
A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan machine learning dalam berbagai bidang: Review paper,” Indones. J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951. Crossref
N. P. H. Oka and A. S. Arifin, “Telecommunication service subscriber churn likelihood prediction analysis using diverse machine learning model,” 2020 3rd Int. Conf. Mechanical, Electronics, Computer, and Industrial Technology, 2020, pp. 24-29, doi: 10.1109/MECnIT48290.2020.9166584. Crossref
E. Domingos, B. Ojeme, and O. Daramola, “Experimental analysis of hyperparameters for deep learning-based churn prediction in the banking sector,” Computation, vol. 9, no. 3, 2021, Art. no. 34, doi: 10.3390/computation9030034. Crossref
Y. Yulianti and A. Saifudin, “Sequential feature selection in customer churn prediction based on naive Bayes sequential feature selection in customer churn prediction based on naive Bayes,” Institute of Physics Conf. Series: Materials Science and Engineering, vol. 879, 2020, Art. no. 012090, doi: 10.1088/1757-899X/879/1/012090. Crossref
S. Agrawal, A. Das, A. Gaikwad, and S. Dhage “Customer churn prediction modeling based on behavioural patterns analysis using deep learning,” 2018 Int. Conf. Smart Comput. Electron. Enterp., 2018, doi: 10.1109/ICSCEE.2018.8538420. Crossref
J. Pamina et al., “An effective classifier for predicting churn in telecommunication,” J. Adv. Res. in Dynamical and Control Syst., vol. 11, pp. 221–229, 2019.
E. Varun et al., “An efficient technique for feature selection to predict customer churn in telecom industry,” 2019 1st Int. Conf. Adv. Inf. Technol., 2019, pp. 174–179, doi: 10.1109/ICAIT47043.2019.8987317. Crossref
R. Bai et al., “Context aware telco churn prediction powered by temporal feature engineering,” 2018 IEEE Int. Conf. Pervasive Comput. Commun. Workshop, 2018, pp. 161–166, doi: 10.1109/PERCOMW.2018.8480416. Crossref
I. Ullah et al., “A churn prediction model using random forest: Analysis of machine learning techniques for churn prediction and factor identification in telecom sector,” IEEE Access, vol. 7, pp. 60134–60149, 2019, doi: 10.1109/ACCESS.2019.2914999. Crossref
B. N. K. Sai, and T. Sasikala, “Predictive analysis and modeling of customer churn in telecom using machine learning technique,” in Proc. 2019 3rd Int. Conf. Trends Electron. Informatics, 2019, pp. 6–11, doi: 10.1109/ICOEI.2019.8862625. Crossref
F. F. Firdaus, H. A. Nugroho, and I. Soesanti “Deep neural network with hyperparameter tuning for detection of heart disease,” 2021 IEEE Asia Pacific Conf. Wireless and Mobile, 2021, pp. 59–65, doi: 10.1109/APWiMob51111.2021.9435250. Crossref
E. Rasywir, R. Sinaga, and Y. Pratama, “Evaluasi pembangunan sistem pakar penyakit tanaman sawit dengan metode deep neural network (DNN),” J. Media Inf., vol. 4, no. 4, pp. 1206–1215, 2020, doi: 10.30865/mib.v4i4.2518. Crossref
M. R. Adi, A. B. Osmond, and A. L. Prasasti, “Penentuan dialek jawa menggunakan metode deep neural network,” eProc. Eng., vol. 6, no. 2, 2019, pp. 5637–5647.
B. W. Putra et al., “Klasifikasi arritmia pada sinyal EKG menggunakan deep neural network,” J. Penelitian Ilmu dan Teknologi Komputer, vol. 13, no. 1, pp. 29–38, 2021.
W. Treethidtaphat, W. Pattara-atikom, and S. Khaimook, “Bus arrival time prediction at any distance of bus route using deep neural network model,” 2017 IEEE 20th Int. Conf. Intell. Transp. Syst., 2017, pp. 988–992, doi: 10.1109/ITSC.2017.8317891. Crossref
M. Astiningrum, M. Mentari, and R. R. N. Rachma, “Deteksi kesegaran daging sapi berdasarkan ekstraksi fitur warna dan tekstur,” in Proc. 2019: Seminar Informatika Aplikatif, 2019, pp. 217–222.
M. Syam, J. Raharjo, and R. Patmasari, “Identifikasi asal daerah berdasarkan suara manusia dengan metode linier predictive coding (lpc),” eProc. Eng., vol. 6, no. 3, pp. 10226–10233, 2019.
H. Abhirawa, Jondri, and A. Arifianto, “Pengenalan wajah menggunakan convolutional neural network,” eProc. Eng., vol. 4, no. 3, pp. 4907–4916, 2017.
C. D. Suhendra and A. C. Saputra, “Penentuan parameter learning rate selama pembelajaran jaringan syaraf tiruan backpropagation menggunakan algoritma genetika,” J. Tek. Inform., vol. 14, no. 2, pp. 202–212, 2020, doi: 10.47111/JTI. Crossref
A. C. Sitepu and M. Sigiro, “Analisis fungsi aktivasi relu dan sigmoid menggunakan optimizer SGD dengan representasi MSE pada model backpropagation,” J. Teknik Inform. Universal, vol. 1, no. 1, pp. 12–25, 2021.
Y. Wang, J. Liu, J. Mišić, V. B. Mišić, and S. Lv, “Assessing optimizer impact on DNN model sensitivity to adversarial examples,” IEEE Access, vol. 7, pp. 152766–152776, 2019, doi: 10.1109/ACCESS.2019.2948658. Crossref
N. A. Putro, R. Septian, Widiastuti, M. Maulidah, H. F. Pardede, “Prediction of hotel booking cancellation using deep neural network and logistic regression algorithm,” Techno Nusa Mandiri: J. Comput. Inform. Technol., vol. 18, no. 1, pp. 1–8, 2020, doi: 10.33480/techno.v18i1.2056. Crossref
S. Mandt, M. D. Hoffman, and D. M. Blei, “Stochastic gradient descent as approximate Bayesian inference,” J. Machine Learning Res., vol. 18, pp. 1–35, 2017.
M. W. P. Aldi, Jondri, and A. Aditsania, “Analisis dan implementasi long short term memory neural network untuk prediksi harga bitcoin,” eProc. Eng., vol. 5, no. 2, pp. 3548–3555, 2018.
M. P. Ranjit, G. Ganapathy, K. Sridhar, and V. Arumugham “Efficient deep learning hyperparameter tuning using cloud infrastructure: Intelligent distributed hyperparameter tuning with bayesian optimization in the cloud,” 2019 IEEE 12th Int. Conf. Cloud Comput., 2019, pp. 520–522, doi: 10.1109/CLOUD.2019.00097. Crossref
S. Sautomo and H. F. Pardede, “Prediksi belanja pemerintah Indonesia menggunakan long short-term memory (LSTM),” J. Rekayasa Sist. dan Teknol. Inf., vol. 5, no. 1, pp. 99–106, 2021, doi: 10.29207/resti.v5i1.2815. Crossref
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 National Research and Innovation Agency

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.