Optimization of Titanium Dioxide Nanoparticles in Mesoporous Electron Transport Layer Perovskite Solar Cell

       Deborah Augustine, Erlyta Septa Rosa, Niki Prastomo, Shobih Shobih

Abstract


Research about mesoporous TiO2 as an electron transport layer in perovskite solar cell has been done to obtain the best fabricated cell’s performance. In this research, the concentrations of opaque and transparent TiO2 nanoparticle were varied, in order to optimize the TiO2 mesoporous electron transport layer in FTO/CL-TiO2/MS-TiO2/Perovskite/P3HT/Ag perovskite-based solar cell. Morphological, optical, and electrical characteristics of TiO2 layers were investigated using scanning electron microscopy (SEM), four-point probe (FPP), and UV-Vis spectroscopy. The influences of those characteristics in solar cell performance were analyzed by using illumination of sun simulator with a light intensity of 500 W/m2. The results showed that transparent TiO2 has a higher conductivity and transmittance compared to the opaque TiO2. The concentration of TiO2 solutionin1:17 ratio resulted in higher electrical performance in both the transparent and opaque TiO2 layer. The best perovskite solar cell performance with PCE of 0.37% was achieved from the sample using TiO2 transparent layer with a concentration of 1:7 ratio.


  http://dx.doi.org/10.14203/jet.v20.23-28

Keywords


mesoporous TiO2; electron transport layer; perovskite solar cell

Full Text:

  PDF

References


X. Yang, H. Wang, B. Cai, Z. Yu, and L. Sun, “Progress in hole transporting materials in perovskite solar cells,” J. Energy Chem., vol. 27, pp. 650-672, May 2018. Crossref

Y. Liu, Q. Chen, H. S. Duan, H. Zhou, Y. M. Yang, H. Chen, S. Luo, T. B. Song, L. Dou, Z. Hong, and Y. Yang, “A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells,” J. Mater. Chem. A, vol. 3, iss. 22, pp.11940-11947, Apr. 2015. Crossref

T. B. Song, Q. Chen, H. Zhou, C. Jiang, H. H. Wang, Y. (Michael) Yang, Y. Liu, J. You, and Y. Yang, “Perovskite solar cells: film formation and properties,” J. Mater. Chem. A, 3, Iss.17, pp. 9032-9050, Mar. 2015. Crossref

E. S. Rosa, N. M. Nursam, Shobih, and R. Abdillah, “Improving the efficiency of perovskite solar cell through the addition of compact layer under TiO2 electron transfer material,” Mater. Sci. Forum, vol. 929, pp. 218-224, 2018. Crossref

Z. Wan, M. Xu, Z. Fu, D. Li, A. Mei, Y. Hu, Y. Rong, H. Han, “Screen printing process control for coating high throughput titanium dioxide layers toward printable mesoscopic perovskite solar cells,” Front. Optoelectron., vol. 12, pp. 344-351, Apr. 2019. Crossref

J. You, Y. (Michael) Yang, Z. Hong, T. B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W. H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett., 105. 183902. 10.1063/1.4901510. 2014 vol. 105, pp. 183902.1-183902.5, 2014. Crossref

Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy Environ. Sci., vol. 7, iss. 8, pp. 2619-2623, May 2014. Crossref

C. H. Chiang and C. G. Wu, “Bulk heterojunction perovskite–PCBM solar cells with high fill factor,” Nat. photonics, vol. 10, pp. 196-201, Feb. 2016. Crossref

P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K.Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells,” Adv. Mater., vol. 26, iss. 22, pp. 3748-3754, Jun. 2014. Crossref

J. You, L. Meng, T. B. Song, T. F. Guo, Y. (Michael) Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. de Marco, and Y. Yang., “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nat. Nanotech., vol. 11, pp. 75-81, Jan. 2016. Crossref

T. S. Su, T. Y. Hsieh, C. Hong, and T. C. Wei, “Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells,” Sci. Rep., vol. 5, pp. 16098.1-16098.8, Nov. 2015. Crossref

S. Ito, “Sensitization and functions of porous titanium dioxide electrodes in dye-sensitized solar cells and organolead halide perovskite solar cells,” in Series on Chemistry, Energy, and Environment: Perovskite Solar Cells Principle, Materials and Devices, vol. 1, E. W. G. Diau and P. C. Y. Chen, Ed. Singapore: World Scientific, 2017, pp. 45-61. Crossref

G. Yang, H. Tao, P. Qin, W. Ke, and G. Fang, “Recent progress in electron transport layers for efficient perovskite solar cells,” J. Mater. Chem. A, vol. 4, iss. 11, pp. 3970-3990, Jan. 2016. Crossref

H. K. Park, D. K. Kim, and C. H. Kim, “Effect of dispersant on titania particle formation and morphology in thermal hydrolysis of TiCl4,” J. Am. Ceram. Soc., vol. 80, iss. 3, pp. 743-749, Mar. 1997. Crossref

S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells,” J. Phys. Chem. B, vol. 106, iss. 39, pp. 10004-10010, Oct. 2002. Crossref

S. Ito, T. N. Murakami, S. M. Zakeeruddin, T. Yazawa, M. Mizuno, S. Kayama, and M. Greatzel, “Effects of TiO2 particle size on the performance of dye-sensitized solar cells using ionic liquid electrolytes,” Nano, vol. 9, no. 5, pp. 1440010.1-1440010.11, 2014. Crossref

Z. Wan, M. Xu, Z. Fu, D. Li, A. Mei, Y. Hu, Y. Rong, and H. Han, “Screen printing process control for coating high throughput titanium dioxide layers toward printable mesoscopic perovskite solar cells,” Front. Optoelectron., vol. 12, pp. 344-351, Apr. 2019. Crossref

H. Y. Yang, W. Y. Rho, S. K. Lee, S. H. Kim, and Y. B. Hahn, “TiO2 nanoparticles/nanotubes for efficient light harvesting in perovskite solar cells,” Nanomater., vol. 9, iss. 3, pp. 326.1-326.10, Mar. 2019. Crossref

K. Sveinbjorrnsson, K. Aitola, J. Zhang, M. B. Johansson, X. Zhang, J. P. C. Baena, A. Hagfeldt, G. Boschloo, and E. M. J. Johansson, “Ambient air-processed mixed-ion perovskites for high efficiency solar cells,” J. Mater. Chem. A, vol. 4, iss. 42, pp. 16536-16545, Sep. 2016. Crossref

A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Petterson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, no. 11, pp. 6595-6663, Sep. 2010. Crossref


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Elektronika dan Telekomunikasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.