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Abstract

This research explores the enhancement of Electrical Impedance Tomography (EIT) for cardiac imaging using
Multilayer Perceptron (MLP) networks, focusing on supervised and semi-supervised learning approaches. Using synthetic
thoracic datasets simulating dynamic cardiac and respiratory conditions, the study demonstrates that supervised learning achieves
lower mean squared error (MSE) values (minimum 4.76) and more stable predictions compared to semi-supervised learning
(minimum MSE 5.08). However, semi-supervised learning excels in edge accuracy and noise reduction, particularly in regions
with sharp conductivity gradients, making it a viable method for scenarios where labeled data is limited. Dropout regularization
at 0.3 provided an optimal balance, enhancing model generalization and robustness. While supervised learning outperformed
semi-supervised methods in overall accuracy, the latter showed potential for cost-effective and scalable applications in EIT-based
cardiac imaging. These findings suggest that integrating advanced machine learning with EIT can improve diagnostic accuracy
and enable efficient use of sparse labeled data, paving the way for future optimizations and clinical applications.

Keywords: Electrical Impedance Tomography, Multilayer Perceptron, Semi-Supervised Learning, Cardiac Imaging, Machine
Learning.

I. Introduction
Electrical Impedance Tomography (EIT) has

emerged as a vital tool in cardiac imaging due to its
non-invasive nature and ability to provide real-time
information about the electrical activity and
conductivity of cardiac tissues. Traditional imaging
modalities such as Magnetic Resonance Imaging (MRI)
and Computed Tomography (CT) often involve
exposure to radiation and can be costly, making EIT an
attractive alternative for continuous monitoring of
cardiac conditions[1], [2]. EIT's capability to visualize
changes in electrical impedance allows for the
assessment of various cardiac functions, which are
crucial for diagnosing and managing cardiovascular
diseases [3], [4]. By utilizing surface electrodes to
measure the electrical conductivity of tissues, EIT
provides real-time insights into physiological changes
within the thoracic cavity, making it invaluable for

assessing both lung and cardiac functions [5], [6]. The
integration of machine learning techniques, such as
Multilayer Perceptron Networks (MLP), into EIT can
enhance image reconstruction and interpretation,
potentially leading to improved diagnostic accuracy and
patient outcomes [7], [8].

The reconstruction of images in EIT is
characterized by its inherent ill-posed nature, where the
relationship between the measured boundary voltages
and the internal conductivity distribution is complex and
non-linear. EIT requires solving complex nonlinear
equations to derive internal conductivity distributions
from surface measurements, which can lead to artifacts
and inaccuracies in the reconstructed images [9].
Traditional reconstruction methods often struggle with
these complexities, necessitating advanced techniques to
improve image quality and reliability. As a result,
machine learning approaches, particularly those
utilizing multilayer perceptron networks, have gained
traction in enhancing the reconstruction process by
learning from large datasets to improve accuracy and
robustness [9], [10]. These networks can learn to
approximate the nonlinear relationships inherent in EIT
data, thereby enhancing the accuracy of the
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reconstruction process and enabling the extraction of
more meaningful features from the imaging data [11].

In the context of cardiac imaging using EIT, semi-
supervised learning approaches are particularly
advantageous. The medical imaging field often suffers
from a scarcity of labeled data due to the time-
consuming nature of expert annotations. Semi-
supervised learning allows for the effective utilization
of both labeled and unlabeled data, thereby improving
model performance even when labeled examples are
limited [12], [13]. Semi-supervised learning can
enhance the model's ability to generalize from a small
set of annotated examples while utilizing the vast
amounts of unlabeled data that can be collected during
routine EIT monitoring [14]. This approach not only
improves the performance of the reconstruction
algorithms but also reduces the need for extensive
manual labeling, which can be time-consuming and
resource-intensive in clinical settings [15].

Several studies have explored the application of
EIT in cardiac imaging. For instance, Zhang et al.
demonstrated the use of deep feature-domain matching
to separate cardiac-related components from EIT image
series, showcasing the potential of advanced machine
learning techniques in enhancing EIT imaging [16].
However, these studies primarily focus on specific
algorithms without a comprehensive exploration of
MLP or semi-supervised learning approaches, which
could further improve the robustness and accuracy of
cardiac imaging. Moreover, the literature indicates a
growing interest in integrating machine learning
techniques with EIT. Rymarczyk et al. discussed the
application of various machine learning algorithms for
image reconstruction in EIT, emphasizing the need for
tailored approaches that can adapt to the unique
challenges of EIT data [17]. Despite this, there remains
a notable absence of research specifically targeting the
use of MLP in conjunction with semi-supervised
learning for cardiac imaging. This gap is critical, as
MLPs have shown promise in other imaging modalities
for their ability to model complex relationships in data,
while semi-supervised learning could leverage
unlabeled data to enhance model training and
performance [18].

In many studies on image reconstruction for
electrical impedance tomography (EIT), the network
architecture used often relies on existing models, such
as U-Net or previously developed CNN variants.
Although these approaches can provide good results, the
use of models tailored to the characteristics of EIT data
is still limited. In this study, we develop a network
architecture from scratch that is optimized for EIT
imaging, taking into account the non-linearity and data
limitations of electrical impedance reconstruction. This
approach allows greater flexibility in tailoring the
network to the specific characteristics of the EIT
problem.

In light of these considerations, the proposed
method aims to develop a robust semi-supervised
learning framework utilizing multilayer perceptron
networks for cardiac imaging with EIT. This approach
will focus on improving the reconstruction of cardiac
images through the incorporation of both labeled and

unlabeled data. By integrating temporal consistency
objectives and disentangled representation learning, the
proposed method seeks to optimize the use of available
data, thereby addressing the limitations of current EIT
reconstruction techniques and contributing to more
accurate and reliable cardiac imaging solutions.

II. Related Works
In the context of cardiac imaging, particularly with

Electrical Impedance Tomography (EIT) utilizing
Multilayer Perceptron (MLP) networks, several studies
have contributed to the development of image
reconstruction techniques. However, a notable research
gap exists in the systematic understanding of optimal
neural network architectures specifically tailored for
EIT applications.

One relevant study conducted by Huuhtanen and
Jung explores anomaly location detection using MLPs
in EIT. They highlight that while there is growing
interest in employing neural networks for EIT, there
remains a lack of comprehensive insights into the most
effective architectures for this purpose, particularly in
addressing the nonlinear ill-posed inverse problems
inherent in EIT [19]. This indicates a significant gap in
the literature regarding the specific design and
optimization of MLPs for improving the accuracy and
reliability of cardiac imaging through EIT.

Another relevant study by Grychtol et al. extends
the GREIT framework to three-dimensional imaging,
which is particularly beneficial for lung imaging [20].
However, while this study enhances the spatial
resolution of EIT images, it does not specifically
address the challenges associated with cardiac imaging,
such as the dynamic nature of cardiac motion and its
impact on image quality. The absence of tailored
algorithms that account for cardiac motion represents a
critical research gap that could be addressed through the
application of multilayer perceptron networks.

Furthermore, the work by Liu et al. introduces a
structure-aware sparse Bayesian learning approach for
EIT image reconstruction, aiming to enhance image
resolution and accuracy [15]. Despite its advancements,
the study does not sufficiently explore the integration of
machine learning techniques, such as multilayer
perceptron networks, which could potentially improve
the adaptability and performance of EIT in real-time
cardiac imaging scenarios. This indicates a need for
further research that combines advanced machine
learning methodologies with EIT to optimize cardiac
imaging processes.

Lastly, the study by Thurk et al. investigates the
effects of individualized EIT settings on regional
ventilation distribution assessment, comparing it to
traditional imaging methods [21]. While this
comparative analysis is valuable, it underscores the
necessity for comprehensive evaluations that
incorporate both cardiac and respiratory signals in EIT
imaging. The lack of studies focusing on the
simultaneous reconstruction of cardiac and respiratory
information using advanced machine learning
techniques presents another significant research gap.

While existing studies provide a foundation for EIT
image reconstruction, there is a clear need for research
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that systematically optimizes reconstruction parameters,
addresses the dynamic nature of cardiac imaging,
integrates advanced machine learning techniques, and
explores the simultaneous reconstruction of cardiac and
respiratory signals. These gaps present opportunities for
further investigation in the field of cardiac imaging
using EIT and multilayer perceptron networks.

III. Multilayer Perceptron Network Design
Architecture

Electrical Impedance Tomography (EIT) is a non-
invasive imaging technique that utilizes electrical
measurements to reconstruct images of the internal
structures of the body, particularly useful in cardiac
imaging due to its ability to provide real-time data
without the risks associated with ionizing radiation [1].
The proposed method integrates EIT with a Multilayer
Perceptron (MLP) network to enhance the accuracy and
efficiency of cardiac imaging. Schematic figure EIT for
cardiac imaging is depicted in Figure 1.

The proposed system consists of an EIT setup with
an array of 16 electrodes placed on the thoracic surface
to measure impedance variations caused by cardiac
activity. The electrodes will inject low-frequency
alternating currents and record the resulting voltage
changes, which are indicative of the internal impedance
distribution. The collected data will be processed using
algorithms Supervised and Semi-Supervised Learning
(SSL) to reconstruct the impedance images, which will
then be fed into the MLP network for further analysis.

In the data generation and preprocessing phase, a
synthetic dataset is created to simulate the impedance
distribution of a human thoracic cross-section during
cardiac activity. This involves using computational
phantoms and solving the forward problem of EIT to
calculate voltage measurements at electrode pairs. The
forward problem is typically addressed using finite
element modeling, which allows for the simulation of
voltage distributions under various conditions, including
the introduction of noise to mimic real-world scenarios.
The dataset is then labeled for supervised learning and
partially labeled for semi-supervised learning, ensuring
a robust training process for the machine learning
models [22].

The dataset is subsequently split into training,
validation, and test sets, ensuring a balanced
representation of various physiological conditions. For

semi-supervised learning, only a subset of the training
data is labeled, while the rest remains unlabeled, which
is crucial for enhancing model performance in scenarios
where labeled data is scarce. The Multilayer Perceptron
(MLP) network serves as the primary machine learning
model for reconstructing EIT images, consisting of fully
connected layers optimized for mapping electrode
voltage data to conductivity images. The architecture
typically includes three fully connected layers with
ReLU, Sigmoid, SoftMax, and tanh activation functions,
and the output consists of pixel-wise conductivity
values forming a reconstructed image.

Training and evaluation of the model involve both
labeled and unlabeled data. In supervised learning, fully
labeled data is utilized to train the model using standard
backpropagation algorithms, while semi-supervised
learning techniques such as pseudo-labeling or
consistency regularization are employed to leverage the
unlabeled data. Performance metrics such as Mean
Squared Error (MSE), Mean Absolute Error (MAE) for
reconstruction accuracy and Image Error for image
quality assessment are used to evaluate the model's
effectiveness, with testing conducted on a separate
dataset to assess generalization capabilities.

Multilayer perceptrons (MLP) with at least one
hidden layer and a linear output layer are recognized as
universal function approximators [23]. Therefore, we
approach the function approximation problem by
directly training an MLP using simulated training data.
To achieve this, we experiment with MLPs by varying
the number of hidden layers and the number of neurons
in each layer to determine the optimal regression
architecture. The resulting architecture is shown in
Figure 2, while the hyperparameters used in our
experiments are detailed in Table 1.

In an MLP architecture (Figure 2), x is the input to
the network that represents the initial data to be
processed. Each input is multiplied by a weight w that
connects it to a neuron in the next layer. The product of
the weights by the input, plus a bias b, produces a linear
value z, which is then used as the input to an activation
function. The activation applied to z is referred to as a,
which serves to add non-linearity to the network so that

Figure 1. Schematic figure EIT for cardiac imaging

TABLE 1
KEY HYPERPARAMETERS MLP FOR SUPERVISED LEARNING AND

SEMI-SUPERVISED LEARNING
Key
hyperparameters

Supervised
Learning

Semi-supervised
Learning

Input layer width 208 208
Hidden layer 1 width 128 256
Hidden layer 2 width 64 128
Hidden layer 3 width - 64
Hidden layer
activation

ReLU,
Sigmoid,

Softmax, tanh

ReLU, Sigmoid,
Softmax, tanh

Output layer width 1912 1912
Output type Linear Linear
Optimizer AdamW AdamW
Loss function MSE MSE
Epochs 100 Initial training: 50

Pseudo-labelling loop:
10/ iteration

Total pseudo-labelling
iteration: 5 iterations
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the model can learn complex relationships in the data.
By applying various activation functions such as ReLU,
Sigmoid, Softmax, or Tanh.

Supervised learning algorithms need substantial data to
achieve strong predictive accuracy. However, in real-world
settings like medical diagnosis, image and speech recognition,
or document classification, much of the data is unlabeled,
which restricts model training on this untagged data. Semi-
Supervised Learning provides a solution to this issue by
blending Supervised and Unsupervised Learning approaches.
Semi-supervised learning is a machine learning method that
uses a limited set of labeled data alongside a large set of
unlabeled data in the training process [12], [24]. The outcome
of Semi-Supervised Learning includes target variables that
help train the model and predict outcomes for previously
unlabeled data. Experiment with MLPs for Semi-supervised
learning by varying the number of hidden layers and the
number of neurons in each layer to determine the optimal
regression architecture. The hyperparameters used in our
experiments are detailed in Table 1.

IV. Experimental Setup and Condition
In this system, we used a phantom that models the

thorax with specific shapes and properties to simulate
lungs and a heart as depicted in Figure 3. The phantom
is designed to reflect realistic biological behaviors such
as respiration and cardiac motion.

The thorax phantom is constructed using a mesh-
based representation. This thorax has 16 electrodes
placed evenly around its perimeter, mimicking the
typical setup for EIT measurements. It includes two
dynamic lung anomalies and a heart anomaly to
replicate physiological conditions:

a. Lungs: Simulated as anomalies with a
permittivity of 10.0. The lung radius varies

Figure 3. Adjacent Current driven patterns for data acquisition of
EIT

Figure 2. MLP architecture used for Supervised Learning
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cyclically to model the inhale and exhale
phases of breathing. Noise is added to
introduce slight random fluctuations to the lung
size, reflecting natural biological variability.

b. Heart: Positioned slightly below the center of
the thorax and modeled as a circular anomaly
with a base radius of 0.15 and a small variation
(±0.02) to simulate cardiac motion. The
permittivity of the heart is set to 5.0, which
differs from both lungs and the surrounding
thorax tissue.

Thorax synthesis data consists of simulated lung
and heart organ data, each of which is distinguished by
its permittivity value. Permittivity describes how a
material (in this case, biological tissue) responds to an
electric field, which is relevant in the physical model of
the thorax. EIT image reconstruction simulations are
displayed based on differences in conductivity values.
In the EIT model, the initial physical simulation using
permittivity properties to describe the tissue, but in the
reconstruction stage, what is input into the algorithm is
a parameter directly measured by EIT, namely electrical
conductivity.

As shown in the thorax phantom, these anomalies
are updated in every iteration. Lung sizes gradually
increase during the inhale phase and decrease during the
exhale phase, while the heart anomaly pulsates slightly
to simulate its motion. Noise is added to the mesh and
voltage measurements to mimic real-world
measurement conditions.

For data collection, we applied a neighboring
method protocol, where the current is applied between
pairs of adjacent electrodes, and the resulting voltages
are measured across all other electrode pairs. This
method enables a dense dataset of voltage differences,
ensuring sufficient information for image reconstruction.

V. Results and Discussion
We conducted algorithm comparisons through

simulations using the pyEIT [25] and Keras [26]
libraries with synthetic test data. The chosen inverse
mesh defined the resolution for modeling lung and heart
anomalies to mimic physiological conditions. The lung
anomaly diameter was randomly varied within the range
d � [0.1, 0.4], while the heart anomaly with a base
radius of 0.15, was simulated with a radius variation of
0.02. This set of conductivity values was processed
through the pyEIT simulation model to solve the EIT
forward problem and generate a frame of voltage
measurements, v. To evaluate the performance of
different MLP algorithms, we trained MLP-based image
reconstruction models using various hyperparameter
configurations and activation functions, selecting those
that yielded the lowest validation loss (MSE).

We compared regularization techniques by first
training the MLP with noise-free training data. We
repeated this with all combinations of hyperparameter
values and regularization techniques mentioned in Table
1 for supervised and semi-supervised learning. Figures
4–9 show the actual and predicted conductivity
distributions for the inhale and exhale conditions. This
comparison of distributions involves two learning

approaches: supervised learning and semi-supervised
learning.

In the inhale condition, the true conductivity
distribution (Figure 4) shows a conductivity distribution
pattern with two high conductivity areas corresponding
to the lung positions. The prediction using supervised
learning (Figure 5) produces a distribution that closely
resembles the original data, but with a slightly lower
spread around the lung area. The prediction using semi-
supervised learning (Figure 6) also gives a distribution
pattern similar to the actual data, but appears to have
better accuracy at the edges than supervised learning.

In the exhale condition, the true conductivity
distribution (Figure 7) shows a distribution pattern with
a decrease in conductivity in the lung area. The

Figure 4. True conductivity distribution while inhale

Figure 5. Predicted conductivity distribution while inhale for
Supervised Learning

Figure 6. Predicted conductivity distribution while inhale for Semi-
supervised Learning

Figure 7. True conductivity distribution while exhale
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prediction using supervised learning (Figure 8) is close
to the actual data, but the distribution is flatter around
the lung core. Semi-supervised learning (Figure 9)
provides results that are more in line with the actual
pattern, especially in the more focused lung core
distribution area. From visual analysis, semi-supervised
learning shows a better ability to capture complex
distribution patterns, especially in areas with sharp
gradients.

The reconstructed images of the conductivity
distribution during inhalation and exhalation (Figures 5–
9) show that the semi-supervised learning method
provides smoother results and is closer to the actual
conductivity distribution compared to the supervised
learning method. The main difference is seen in the
boundary area between two regions with different
conductivity values, where semi-supervised learning
shows a reduction in noise and artifacts.

Table 2 provides quantitative results based on MSE
values for various combinations of activation functions
and dropouts in supervised and semi-supervised
learning approaches. In general, supervised learning has

a lower MSE than semi-supervised learning. This is
expected because the semi-supervised approach uses
less labeled data, so the prediction accuracy decreases.
However, the performance degradation of semi-
supervised learning is still within acceptable limits, with
an average MSE difference of around 0.1–0.3.

Supervised learning has a lower MSE than semi-
supervised learning indicating that the model with
supervised learning is more accurate in predicting the
conductivity distribution. A higher dropout rate (0.5)
gives the best results for most activation functions,
especially for Sigmoid and ReLU (lowest MSE: 4.76 for
Sigmoid with dropout 0.5). Although semi-supervised
learning produces a slightly higher MSE, this result
indicates the potential for using less data than
supervised learning. A dropout rate of 0.3 provides a
good balance for both ReLU and Sigmoid activation
functions.

Dropout stability in Semi-supervised Learning is
obtained when the dropout value is 0.3, which is the
middle value that provides an optimal balance between
preventing overfitting and maintaining the model's
representation capacity. The result is a relatively lower
and consistent MSE across most activation functions.
Meanwhile, too low a dropout (0.1) in semi-supervised
learning tends to result in overfitting, because the model
is less able to handle noise in the training data,
especially when some of the data is unlabeled.
Conversely, if the dropout is too high (0.5) it tends to
cause underfitting, where the model loses important
information because too many neurons are deactivated
during training.

The ReLU activation function shows stable
performance with competitive MSE in both supervised
and semi-supervised methods. Notably, the Sigmoid
function achieved the lowest MSE of 4.76 in supervised
learning when combined with a dropout rate of 0.5,
indicating that this configuration enables the model to
learn more effectively and generalize well to the target
output. In contrast, both Softmax and tanh functions
produce slightly higher MSE than ReLU and Sigmoid,
but remain competitive, especially at a dropout of 0.3
for semi-supervised learning.

The impact of adding a dropout of 0.3 provides the
best balance between generalization and accuracy for
most activation functions. In contrast,. a dropout rate of
0.1 resulted in higher MSE values, suggesting
insufficient regularization capacity. Dropout 0.5 shows
a decrease in MSE in supervised learning, but slightly
increases MSE in semi-supervised learning.

The semi-supervised learning approach has good
potential to be applied to limited labeled data such as
electrical impedance tomography. Although the MSE of
this approach is higher than supervised learning, the
visual results show that this approach is able to
reconstruct the conductivity distribution pattern well.

Figure 10 illustrates the smooth and periodic nature
of the lung's inhale-exhale cycle, with lung size
increasing during inhalation and decreasing during
exhalation. The cycle follows a sinusoidal pattern,
indicating that the data represents the dynamic changes
in lung volume accurately. This smooth and symmetric
pattern provides a strong foundation for analyzing the

TABLE 2
COMPARISON OFMSE FOR REGULARIZATION TECHNIQUE

Activation Dropout

MSE

Supervised
Learning

Semi-
supervised
Learning

ReLU
0.1 5.18 5.57
0.3 5.04 5.40
0.5 5.01 5.19

Sigmoid
0.1 4.86 5.17
0.3 4.79 5.13
0.5 4.76 5.08

Softmax
0.1 4.94 5.49
0.3 4.90 5.22
0.5 4.86 5.12

tanh
0.1 5.01 5.29
0.3 4.94 5.28
0.5 4.90 5.24

Figure 8. Predicted conductivity distribution while exhale for
Supervised Learning

Figure 9. Predicted conductivity distribution while exhale for
Semi-supervised Learning
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image prediction error across the inhale-exhale phases
using supervised and semi-supervised learning methods.
This graph (Figure 10) only shows the breathing pattern
(expanding and deflating). However, in the mesh-based
simulation, no changes in the shape of the lung are
actually made. Only the electrical conductivity values
are changed, not the mesh shape. So, the mesh remains
stationary, only the data mathematically describe the
changes in breathing.

In this simulation, lung size is modeled as a
sinusoidal function that oscillates between a minimum
value of 0.1 (exhalation) and a maximum value of 0.4
(inhalation). These results indicate that during the
breathing process, the lung size changes by about 75%
of its maximum size when moving from exhalation to
inhalation. This value is still within the range of
reasonable lung volume changes according to
physiological studies [25].

Figure 11 shows the image error (IE) across the
continuous inhale-exhale cycle for supervised learning.
During the inhalation phase (0-6 seconds), the error
gradually increases, peaking around 2-3 seconds before
decreasing as the cycle approaches the transition to
exhalation. This increase is likely due to the challenges
of capturing rapid changes in conductivity distribution
during the early stages of lung expansion. During the
exhalation phase (6-12 seconds), the error decreases
initially but slightly increases again toward the end of
the cycle, potentially due to the model's limitations in
capturing minor variations in conductivity at the end of
exhalation. Overall, supervised learning demonstrates

relatively low and stable error values throughout the
cycle, indicating its effectiveness in predicting the
distribution of conductivity accurately.

Figure 12 presents the image error over the inhale-
exhale cycle for semi-supervised learning. Similar to
supervised learning, the error increases during the early
inhalation phase and peaks around 2-3 seconds.
However, the overall error values are slightly higher
than those observed in supervised learning. During
exhalation, the error decreases but exhibits more
noticeable fluctuations compared to supervised learning,
particularly toward the end of the cycle. This indicates
that while semi-supervised learning can capture the
general trend of the cycle, it struggles with finer details
and exhibits less stability, likely due to the limited
availability of labeled data during training.

When comparing the two methods, supervised
learning outperforms semi-supervised learning in terms
of accuracy and stability, with lower error values and
smaller fluctuations throughout the cycle. The results
highlight the advantage of using fully labeled data for
accurately modeling complex changes in conductivity
during the inhale-exhale cycle. However, semi-
supervised learning still shows promise by providing
reasonable predictions with less reliance on labeled data,
making it a practical alternative when fully labeled
datasets are unavailable

VI. Conclusion
The main contribution of this research is the

development of a network architecture specifically

Figure 10. Smooth inhale-exhale cycle of lung cardiac

Figure 11. Image error over continuous inhale-exhale cycle for Supervised learning

Figure 12. Image error over continuous inhale-exhale cycle for Semi-supervised learning
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designed for EIT imaging, which has been shown to
improve reconstruction accuracy compared to previous
approaches. The semi-supervised learning approach
shows great potential for image reconstruction in
electrical impedance tomography, especially when
labeled data are limited. Despite having slightly higher
MSE values ​ ​ than supervised learning, this method
is able to reconstruct the conductivity distribution well,
especially in areas with complex gradients such as
inhale and exhale conditions. The Sigmoid and Tanh
activation functions and the use of a dropout of 0.3
provide the most stable and accurate results in both
approaches.

These results confirm that semi-supervised learning
can be an efficient and effective alternative in
tomography applications. By reducing the dependence
on fully labeled data, this method allows for cost and
time savings in data collection. For further development,
optimization of model parameters and integration with
data enhancement techniques can improve the accuracy
and generalization of this approach.

In terms of image error (IE), supervised learning
method shows better performance with lower and stable
error throughout the inhalation-exhalation cycle,
indicating the ability of the model to predict the
conductivity distribution with high accuracy. In contrast,
the semi-supervised learning method yields higher
errors and greater fluctuations, especially during the
transition between inhalation and exhalation phases.
This suggests limitations in capturing dynamic
conductivity changes with the same level of precision,
due to the reduced availability of labeled data.
Nevertheless, semi-supervised learning still
demonstrates reasonably accurate predictions, with
lower accuracy compared to supervised method. Data
collection is preferably done in the exhalation phase,
because in this phase the model shows better
performance with lower and more consistent error. The
transition between inhalation and exhalation can be a
more difficult point to predict, so avoiding the transition
phase and focusing on exhalation can provide more
optimal results in terms of prediction accuracy.
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