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Abstract 

This study addresses the challenges of selecting a suitable visual tracking method for real-time mobile robot applications, 

particularly in scenarios where the target is moving on the ground. The primary research problem addressed is the need for a 

flexible, computationally efficient tracking method that does not rely on pre-existing labeled datasets, as is often required by deep 

learning approaches. Unsupervised methods can overcome this problem by utilizing object motion information in each image frame 

without prior training. With many unsupervised tracking methods available, choosing an appropriate algorithm that can perform 

efficiently under dynamic conditions becomes a critical problem. The study compares the performance of three unsupervised visual 

tracking methods: particle filter, optical flow, and channel and spatial reliability tracker (CSRT) under various tracking conditions. 

The dataset used includes challenges such as moving target variations, changes in object scale, viewpoint changes, suboptimal 

lighting, image blurring, partial occlusions, and abrupt movements. Evaluation criteria include tracking accuracy, resistance to 

occlusion, and computational efficiency. The particle filter with ORB and a constant velocity model achieves a root mean square 

error (RMSE) of 36.47 pixels at 13 frames per second (fps). Optical flow performs best with an RMSE of 10.79 pixels at 30 fps, 

while CSRT shows an RMSE of 252.35 pixels at 4 fps. These findings highlight the effectiveness of optical flow for real-time 

applications, making it a promising solution for mobile robot visual tracking in challenging situations. 
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I. INTRODUCTION 

Visual tracking is critical in various fields, such as 

autonomous robotics, surveillance, and video analysis. 

Recent advancements in deep learning-based 

methodologies have significantly enhanced tracking 

accuracy. One of the main problems is the limitation of 

deep learning-based methods, which require a lot of time 

and cost for the training process. In addition, this 

approach also requires a large labelled dataset, which is 

not always available, especially for real-time applications 

[1], [2]. Another challenge is the need for a flexible 

object-tracking method that can adapt to changing 

environmental conditions without relying on a pre-

trained dataset [3]– [5]. This method is important because 

real-world tracking targets are often new or unknown 

objects. 

Along with the development of technology, 

unsupervised tracking methods have become an 

attractive alternative. Unsupervised methods can 

overcome this problem by utilizing object motion 

information in each image frame without prior training. 

With the many unsupervised methods available, selecting 

a visual tracking method for mobile robots with targets 

moving on the ground becomes a problem when we 

implement it in a real-time system. Therefore, this study 

evaluates unsupervised visual tracking methods, which 

are more suitable for application in such conditions. 

This study compares three popular unsupervised 

tracking methods: particle filter, optical flow, and 

channel and spatial reliability tracker (CSRT). These 

three methods represent visual tracking algorithms with 

different characteristics in terms of speed, robustness to 

occlusion, and adaptability to target changes. The 

following are the characteristics of each method. Particle 

filter is suitable for use in environments with non-linear 

motion and can handle object shape and position 

changes. However, this method has a high computational 

burden, which can hinder its performance on devices 

with limited resources [6], [7]. 

Particle filters are sophisticated algorithms 

frequently used for state estimation in various 

applications, especially navigation and robotics. They 

work well in dynamic contexts because they can handle 

non-linear and non-Gaussian issues. However, obstacles 
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like initialization problems and particle deterioration may 

reduce its efficacy [8]. 

Studies on particle filters in robotics include 

enhanced particle filter performance for indoor 

navigation [9], improved detection probability for multi-

target tracking [10], and improvements in navigation 

accuracy and robustness in mapping [11], the proposed 

method effectively addresses multiple solutions in 

inverse kinematics [12]. It also improves GPS 

positioning accuracy and robustness [13], and visual 

target locking during fast ground maneuvers [5]. The 

visual object tracking method that employs the particle 

filter algorithm, enhanced with Orientated Fast and 

Rotated BRIEF (ORB), provides a fast and accurate 

solution for object tracking [1]. The performance of the 

ORB particle filter (ORBPF) has been evaluated against 

traditional tracking methods under challenging 

conditions, including variations in illumination, scale, 

rotation, and occlusions [14]. 

Optical flow: this method is fast and efficient in 

calculating object motion between frames. Still, it is 

susceptible to noise and drastic changes in the target, 

such as changes in lighting or object shape [15]. Optical 

flow-based tracking methods offer a compelling 

alternative, particularly unsupervised techniques like the 

Lucas-Kanade algorithm. These methods focus on the 

motion patterns of pixels over time, enabling them to 

adapt swiftly to changing conditions without needing 

pre-trained models [16], [17]. Such characteristics make 

optical flow methods particularly suitable for real-world 

applications that demand speed and adaptability [18]. 

Recent research using optical flow includes detecting and 

tracking moving objects in video by analyzing velocity 

vectors [19], reconstructing global motion-group 

parameters from real-time image sequences to follow 

moving objects [20], detecting and tracking moving 

objects [21]– [23], vehicle motion tracking and velocity 

estimation [24]. 

CSRT: designed for high-accuracy object tracking, 

using a tight bounding box around the object. Although 

very accurate, this method has a low speed on devices 

with limited computing capacity [25]. Recent research 

using CSRT includes mobile object tracking [26]– [28], 

vision-guided manipulator operating system [29], and 

improved vehicle detection and tracking [30]. 

To comprehensively understand visual tracking 

capabilities, this research will compare three 

unsupervised visual tracking methods: Particle filter, 

optical flow, and CSRT. The focus on single-object 

tracking simplifies the scenario, allowing for a more 

detailed performance analysis of each method in a 

controlled setting [31]  

In summary, even though deep learning techniques 

are renowned for their precision in visual tracking, their 

drawbacks in dynamic situations and real-time 

applications make other strategies necessary. This study 

compares particle filter, optical flow, and CSRT methods 

to determine the most suitable visual tracking method for 

implementation on a mobile robot with a moving target 

on the ground. It gives a better picture of what they can 

do in single-object tracking situations. This study also 

initiates further research into visual tracking systems 

using pan-tilt control cameras, broadening the tracking 

area. 

II. METHODS 

This research rigorously assessed the particle filter, 

optical flow, and CSRT algorithms for single-object 

tracking under controlled conditions for mobile robotics. 

Subsequently, the methodologies are elaborated, 

followed by an exposition of the experimental setup and 

performance evaluation metrics. 

A. Particle Filter Algorithm 

The sequential Monte Carlo approach, known as the 

color-based particle filter (CPF), works with any state 

model and is based on a representation of the mass of the 

point of the probability density [3]. The Monte Carlo 

algorithm is a sampling method to estimate a function's 

integral or numerical value, which is widely recognized 

in various fields [3]. The order of the data does not 

influence this method, as it relies on drawing random 

samples from a particular distribution to compute the 

estimate [3]. However, the Monte Carlo approach needs 

to consider time, as it typically considers only the 

distribution at that moment, reflecting its static nature 

[32]. The Particle Filter integrates sequential prediction, 

measurement, and resampling with aspects of Monte 

Carlo methods, allowing for a dynamic state estimate 

update [33]. Predicting system changes, taking fresh 

measurements, and updating the particles based on the 

measurements' level of agreement are all part of each 

time step in this framework [34]. 

Particle filtering is an advanced technique for 

estimating evolving states in systems defined by non-

Gaussian distributions and non-linear dynamics. This 

approach is especially beneficial for tracking objects in 

complex and unpredictable environments, such as those 

found in robotics, navigation, and environmental 

monitoring [35]. The particle filter depicts the system's 

posterior distribution through a collection of particles, 

each representing a possible system state. Main steps of 

the particle filter algorithm:  

1) Particle Initialization:  

The preliminary step involves generating particles 

dispersed across a region where the target is likely to be 

located. This configuration is crucial as it establishes the 

foundation for subsequent estimation processes. The 

particles are usually sampled from a prior distribution, 

utilizing available information regarding the target's 

location, which may be informed by historical 

observations or an environmental model [8], [36]. 

2) Prediction 

 During this phase, every particle progresses 

according to a dynamic model that characterizes the 

target's movement. This model can include various 

elements such as speed, acceleration, and environmental 

factors, allowing the particles to adjust over time. The 

prediction phase is crucial to preserve the particle's 

importance as the system dynamics shift. Recent research 

has indicated that incorporating Kalman filtering 

techniques can improve prediction precision, particularly 

in occlusion situations [36]. 
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3) Weighting 

After the prediction step, the process necessitates 

determining the weight of each particle by evaluating its 

congruence with the current observation, such as the 

observed position of an object in an image or video. This 

procedure typically involves a likelihood function which 

quantifies the probability of the current data given the 

state of the particle. Particles that closely align with the 

observations are assigned higher weights, whereas those 

with fewer congruent matches are assigned lower 

weights. This step is crucial to focus the filter on the most 

probable states of the target [37]. 

The fundamental formula for calculating the weight 

𝑤i of particle i at time t is based on  the current state (xt) 

and the current observation (zt). The weight is defined as: 

                                  𝑤𝑖
𝑡 = 𝑃(𝑧𝑡|𝑥𝑡

𝑖)  (1) 

Here, 𝑃(𝑧𝑡|𝑥𝑡
𝑖) represents the likelihood of receiving 

observation zt given that the particle is in state 𝑥𝑡
𝑖. 

4) Resampling 

The final phase involves the resampling of particles. 

During this process, particles with low weights are 

discarded, and new particles are generated near those 

with high weights. This approach facilitates the focusing 

of computational resources on the most promising 

regions of the state space. It mitigates the issue of particle 

degeneracy, wherein a small number of particles 

dominate the representation of the posterior distribution. 

Advanced resampling strategies, such as systematic or 

stratified resampling, can enhance the effectiveness and 

precision of the particle filter [38]. 

Selecting a target motion model significantly 

impacts the algorithm's performance and precision within 

visual tracking algorithms that utilize particle filters. A 

commonly utilized model in this regard is the constant 

velocity (CV)  model, which assumes the target retains a 

consistent speed and trajectory over time [39]. Object 

tracking model with CV model with linear discrete state 

equation: 

                             𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝑣𝑘  (2) 

where xk+1 is the tracker employs a state vector that 

includes the target's position (x, y), the velocity (𝑥, ̇ 𝑦 ̇) 

and the scale s. The noise within the object is denoted by 

vk. xk+1, xk, and vk are in pixels. T is the transpose symbol, 

indicating that this is a column vector. 

                        𝑥𝑘 = [𝑥𝑘   𝑦𝑘  𝑥̇𝑘   𝑦̇𝑘   𝑠 ]
𝑇 (3) 

and F represents the transition matrices: 

                      F =

[
 
 
 
 
1 0 𝐷 0 0
0 1 0 0 0
0 0 1 𝐷 0
0 0 0 1 0
0 0 0 0 1

 

]
 
 
 
 

 (4) 

where D is a constant parameter obtained from the 

covariance of the process matrices about the detected 

object. Given that D is presumed constant, the velocity of 

the tracked object is consequently constrained. 

The constant velocity model provides a 

straightforward approach to predicting a target's future 

position by analyzing its current state. This model 

assumes that the velocity remains unchanged, making it 

appropriate for various practical situations where targets 

exhibit consistent motion [12]. However, the model may 

face challenges when the target experiences abrupt 

changes in speed or direction, such as during evasive 

maneuvers or navigating complex environments [6].  

The sophisticated motion model incorporates 

constant velocity constant turn (CVCT), wherein ω is the 

turning rate. 

                        𝑥𝑘 = [𝑥𝑘   𝑦𝑘  𝑥̇𝑘   𝑦̇𝑘  ω  𝑠 ]𝑇 (5) 

and the transition matrices: 

      F =

[
 
 
 
 
 
 1 0

sin (ωT)

ω
−

cos (ωT)

ω
0 0

0 1 −
cos (ωT)

ω

sin (ωT)

ω
0 0

0 0 cos (ωT) −sin (ωT) 0 0

0 0 sin (ωT) cos (ωT) 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 

]
 
 
 
 
 
 

 (6) 

Previous research endeavored to employ the 

enhanced particle filter algorithm in conjunction with 

ORBPF for visual target tracking during rapid terrestrial 

movements, utilizing the CVCT target model. The 

standard ORBPF with CV method yielded a root mean 

square error (RMSE) proximal to 345,518 pixels, 

whereas the ORBPF-CVCT approach exhibited an 

RMSE of approximately 191,387 pixels. These outcomes 

suggest that the ORBPF-CVCT technique demonstrates 

superior proficiency in tracking rapidly maneuvering 

objects compared to the ORBPF-CV method [5]. 

B. Optical Flow Algorithm 

The concept of optical flow is based on the 

assumption that the pattern of pixel intensities of an 

object in an image does not change as the object moves. 

If an object moves from one position to another in a 

sequence of images, the intensity of the pixels 

representing that object remains constant, even though its 

position changes [40]. This is illustrated in Figure 1. 

The Lucas-Kanade method was chosen for its 

efficiency and suitability for real-time applications on 

mobile robots. This method calculates optical flow by 

solving the motion equations locally for each pixel in a 

small neighborhood, making it computationally lighter 

than dense methods like Farneback. It is particularly 

effective in environments with good structure and 

moderate motion but may face challenges with rapid 

movements or large displacements. 

Mathematically, optical flow can be represented by 

the intensity continuity equation, which is stated as 

follows: 

                 𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) (7) 

where I(x,y,t) is the pixel intensity at coordinate (x,y) at 

time t, Δx and Δy are the changes in position in the x and 

 
Figure 1. Basic concept of optical flow. 
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y directions over time, and Δt is the change in time. By 

expanding the equation using a Taylor series and 

neglecting higher terms, we obtain the following 

equation: 

                               
𝛿𝐼

𝛿𝑥
𝑢 +

𝛿𝐼

𝛿𝑦
𝑣 +

𝛿𝐼

𝛿𝑡
= 0 (8) 

δI/δx and δI/δy are the image intensity gradients in the x 

and y directions, δI/δt is the image intensity gradient in 

time, and u and v are the optical flow velocity 

components in the x and y directions. 

C. CSRT 

The CSRT represents a robust correlation-based 

object-tracking methodology. It exploits both chromatic 

(channel) and spatial information to augment the tracking 

precision.[25]. This methodology demonstrates notable 

efficacy in addressing scale and rotational dynamics 

variations, rendering it highly applicable to a diverse 

spectrum of tracking applications. [25], [41]. The main 

procedural steps include:  

1) Feature Extraction 

Initially, the CSRT algorithm employs histogram 

features or features derived from the Histogram of 

Oriented Gradients (HOG) to encapsulate the 

characteristics of the object. These features are crucial for 

distinguishing the target object from the background and 

other entities in the scene. The selection of suitable 

features markedly influences the robustness of the 

tracking process, especially in challenging scenarios such 

as occlusions or variations in lighting [42]. 

2) Model Update 

After extracting features, the tracking model 

undergoes an update wherein information about the 

object derived from the current frame is incorporated. 

This updating process facilitates the model's adaptation 

to any modifications in the object's appearance or 

positioning, thus preserving tracking accuracy over time. 

The updating of the model is critical for addressing 

variations in scale, rotation, and other transformations 

that the object may experience during the tracking 

process [25]. 

3) Matching 

The next step involves applying correlation filtering 

to locate the object in the subsequent frame. This process 

uses the updated model to search for the object based on 

the extracted features. The correlation filter computes the 

similarity between the current frame and the model, 

allowing for precise object localization. This matching 

step is critical for ensuring that the algorithm can 

accurately track the object despite potential changes in its 

appearance or position [25]. To estimate the object's 

position, CSRT applies correlation in the Fourier domain 

using the Fourier transform 𝐹 : 

                           𝑦 = 𝐹−1(
∑ 𝐹(𝑓𝑖).𝐹(𝑓𝑖)̅̅ ̅̅ ̅̅ ̅

𝑖

∑ 𝐹(𝑓𝑖).𝐹(𝑓𝑖)𝑖
) (9) 

where fi is the object's feature, the result of this 

correlation indicates the peak location, showing the 

object’s position. 

D. Custom Dataset 

The tracking algorithm will be tested with an image 

sequence dataset and compared with other well-known 

unsupervised detection algorithms. We created the 

dataset: video recordings of target movements modeled 

with a 1:10 scale RC car whose speed varies from 0 to 2 

m/s. The video represents the challenges in tracking 

visual objects, including objects moving left, right, 

forward, and backward, then the challenges: changes in 

object scale to small or large, changes in front, side, and 

back views, poor lighting, blurred images, loss of part of 

the object, sudden movement, and changing speed. The 

video was taken with a still camera position with 30 fps 

and a resolution of 640  480 px. Then, the video was 

made into an image sequence of 2090 images, and an 

example is shown in Figure 2. 

Annotation of the image sequence dataset was 

carried out using Visual Object Tagging Tool (VoTT) 

software, namely, providing annotations in the form of 

bounding boxes on the target image, as shown in Figure 

3. The annotation results for each frame obtained ground 

truth in the form of four points of the x and y positions of 

the box forming the bounding box against the image 

frame, namely xmin, ymin, xmax, and ymax so that the position 

(x, y) of the center point can be calculated against the 

frame. 

E. Experimental Setup 

We used a mobile robot scale 1:10 equipped with a 

camera, a jetson nano dev kit mini-computer, and a 5-volt 

DC power supply to provide power to the mini PC and 

camera, as shown in Figure 4, and the target we used the 

RC car scale 1:10 as shown in Figure 5. 

Target lock testing on all algorithms was conducted 

using a Jetson nano with ARM Cortex A57 running 

Ubuntu 20.04 with 4 GB of memory and 1.43 GHz of 

processing power. The data sets were, in turn, tested to 

determine the actual computing speed when applied to 

this hardware. This test is carried out by running the 

program, which selects the target or region of interest 

(ROI) manually and then runs the tracker algorithm to 

track the target from the custom-created image sequence. 

The test results in the form of the tracked targets' x and y 

center point positions will be compared with the ground 

truth in each frame by calculating the root mean square 

error (RMSE) of the center point. The computational 

 
Figure 2. Image sequence dataset example. 
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speed is also recorded. From these results, an analysis 

is performed so that the performance of each algorithm 

can be determined. 

This experiment uses a visual tracking particle filter 

algorithm, incorporating a particle filter integrated into 

ORB with CV and CVCT motion models. The 

methodology commences with an initialization phase, 

where the target for tracking is selected by delineating an 

ROI in the form of a bounding box. After that, the ORB 

and PF algorithms operate simultaneously. The ORB 

algorithm identifies features by pinpointing critical 

points using FAST, and BRIEF calculates descriptors for 

each detected feature. Concurrently, the particle filter 

algorithm generates many particles and disperses them 

within the ROI. 

After this, weights are allocated to the critical points 

ORB identifies and the particles. The amalgamation of 

these significant points produces points with enhanced 

prediction probabilities. The assignment of weights to the 

particles is predicated upon their respective potential 

weights. Particles exhibiting higher likelihoods are 

regarded as more probable and hence are assigned greater 

weights, whereas particles with lower probabilities are 

accorded lesser weights. Afterward, particles are 

arranged in descending order based on their weights, and 

those with optimal weights are selected for future 

application. 

The next step involves normalizing and resampling 

the weights to create a new set of particles for future 

iterations. Finally, the following stage includes 

computing and estimating new positions using a 

particular dynamic model. 

The optical flow tracker algorithm process begins 

with initialization and preparation, in which crucial 

variables and objects, including video recordings and 

buffers for processed frames, are initialized. 

Additionally, signal handling is configured to allow the 

program to terminate safely if required. Subsequently, 

the user designates an ROI in the initial frame, which is 

a reference area for feature detection. Feature detection 

is subsequently initialized by utilizing the Shi-Tomasi 

corner detector to generate reliable tracking features. 

Moving to frame processing, each new frame is read from 

the input source, comprising a series of images from a 

directory. Frames are converted to grayscale to enhance 

the efficiency of feature detection. Background 

subtraction is applied to produce a foreground mask, thus 

isolating moving objects from the static background. 

Optical flow is computed using the Lucas-Kanade 

method to track the movement of features between 

frames. This method employs pyramid images to capture 

changes in the positions of feature points. Points are 

filtered according to the status returned by the Lucas-

Kanade method, ensuring that only successfully tracked 

points are considered. Should the number of tracked 

features satisfy the required threshold, the Random 

Sample Consensus (RANSAC) method is utilized in 

conjunction with a homography search to compute the 

homography between the two matched point sets and 

exclude outliers. The resulting inliers are thus employed 

to define a new bounding box. The global and central 

bounding boxes are updated based on the tracked and 

filtered features, enabling the program to monitor the 

overall movement of an object within a video or image 

sequence. 

The CSRT algorithm commences by selecting a ROI 

in the initial frame to serve as the reference area for object 

tracking. Following the definition of ROI, the CSRT 

tracker becomes operational. As a feature-based tracking 

method, CSRT demonstrates proficiency in tracking 

nonrigid objects. It employs features such as histogram 

of Oriented Gradients (HOG) and segmentation, which 

contribute to enhanced tracking stability even under 

varying conditions of shape or illumination. Each frame 

undergoes preprocessing through the normalization of 

the color intensity and applying Gaussian blur to mitigate 

noise, thereby facilitating feature detection. Within each 

frame, the object's bounding box position is updated 

dynamically. Upon successful tracking, the position of 

the bounding box is refined using a moving average 

technique that calculates the average of bounding box 

positions from preceding frames. This methodology 

mitigates jitter and improves tracking stability. 

 
Figure 3. Image sequence annotation using VoTT software.  

Figure 5. RC car 1:10 for the target. 

 

Figure 4. Mobile robot configuration. 
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Ultimately, the updated bounding box and tracking 

outcomes are rendered in a live output window, ensuring 

that object tracking is exhibited in real-time with stability 

and reliability. 

All visual tracking algorithms have been developed 

by utilizing several opencv libraries, with the main focus 

of evaluation being as follows: 

1) Accurate tracking 

 Evaluated by comparing the program's effectiveness in 

tracking the target object across different scenarios. 

2) Efficiency of Computation  

The cost-effectiveness of utilizing frames per second 

(fps) for real-time applications was assessed. 

3) Strength 

It was tested under challenging conditions, such as 

moving left, right, forward, and backward, scaling 

objects to small or large, front, side, and back views, dark 

conditions, blur, partially disappearing objects, abrupt 

movements, and speed changes. 

III. RESULT AND DISCUSSION 

This study evaluates the effectiveness of various 

unsupervised visual tracking methods on mobile robots, 

including ORBPF-CV and ORBPF-CVCT particle 

filters, optical flow, and CSRT. We use a dataset that has 

been annotated with ground-truth target center points. 

We assess its accuracy by measuring the error of the 

dataset's center point with the tracking result's center 

point in RMSE. We measure the computational speed of 

each algorithm. Figure 6 shows an example of ORBPF 

tracking results where ORBPF with the target dynamic 

model using CV and CVCT is performed simultaneously, 

where the green bounding box is the ORBP-CV, and the 

yellow bounding box is the ORBPF-CVCT. Figure 7 and 

8 are examples of optical flow tracking and CSRT 

tracking results. 

In the initial experiment, a comparative analysis was 

conducted between the ORBPF-CV algorithms under 

three distinct scenarios, each characterized by a specific 

combination of particles in the particle filter (PF) and the 

ORB. The ratios examined include 50:20, 80:30, and 

100:40. This investigation aimed to assess the balance 

between accuracy and computational efficiency. 

 

Figure 9 illustrates the results for a scenario 

characterized by a ratio of 50:20, where the mean 

processing duration per frame of ORBPF-CV, 

corresponding to 13 fps, is 0.076263 seconds with RMSE 

of 36.47 pixels. On the contrary, ORBPF-CVCT records 

a processing time of 0.079559 seconds or 12 fps, with an 

RMSE of 86.26 pixels. Figure 10 presents the results for 

a scenario with a ratio of 80:30, indicating that the 

average processing time per frame of ORBPF-CV is 

0.106789 seconds or 9 fps, with an RMSE of 33.84 

pixels. In comparison, ORBPF-CVCT shows a 

 
Figure 6. Example of ORBPF tracking results. 

 
Figure 7. Example of optical flow tracking results. 

 
Figure 8. Example of CSRT tracking results. 

 
Figure 9. Test results with a combination of PF particles and 

ORB particles of 50:20. 
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processing time of 0.111047 seconds or 9 fps, with an 

RMSE of 82.42 pixels. Figure 11 shows the results for a 

scenario with a ratio of 100:40, revealing that the average 

processing time per frame of ORBPF-CV is 0.148283 

seconds or 7 fps, with an RMSE of 25.61 pixels. In 

comparison, ORBPF-CVCT demonstrates a processing 

time of 0.1554036 seconds or 6 fps, with an RMSE of 

98.14 pixels.  

This analysis indicates that increasing the ratio of 

particles in the particle filter (PF) and ORB progressively 

reduces the RMSE for ORBPF-CV. In contrast, it tends 

to elevate the RMSE for ORBPF-CVCT, coupled with a 

decrease in computational speed for both methods.  

When ORBPF-CV is compared with ORBPF-CVCT 

in this specific challenge, ORBPF-CV exhibits superior 

performance. Both algorithms exhibit comparable 

characteristics in their RMSE peaks, particularly when 

the target undergoes abrupt movements and experiences 

partial or complete loss. However, ORBPF-CV 

demonstrates a more expedient capability to reacquire the 

target. 

The constant velocity model is considered superior 

for tracking ground RC targets within this scenario due 

to its simplicity and enhanced responsiveness to changes 

in linear velocity, devoid of any rotational elements. It 

proves appropriate for linear motion patterns that lack 

noticeable turns, facilitating rapid and precise predictions 

when the target experiences abrupt stops or accelerations. 

On the contrary, the constant turn model introduces 

superfluous complexity, which may increase the 

likelihood of predictive inaccuracies during sudden 

forward or backward movements.  

Particle filter has the advantage of handling complex 

motion and non-Gaussian noise. However, this algorithm 

is susceptible to drift problems, especially when the 

target has an irregular shape or is partially occluded. In 

our tests, drift occurs when the target loses its main 

features (key points) due to partial loss of the target shape 

or significant sudden target movement, which causes the 

algorithm to learn background features because the 

particle filter relies on local feature models (such as 

ORB), which are susceptible to variations in the target 

shape [43]. The tracking results show a decrease in 

accuracy with an RMSE of up to 36.47 pixels in such 

situations. 

The subsequent phase involves evaluating the 

optical flow algorithm. The findings reveal an average 

processing duration per frame of 0.033718526 seconds, 

approximately equivalent to a frame rate of 30 fps, with 

an accuracy measured by RMSE at 10.79 pixels. 

Compared to the optimal outcomes of ORBPF-CV, the 

performance of this optical flow algorithm demonstrates 

significant superiority. The results are illustrated in 

Figure 12. Both algorithms exhibit similar RMSE peaks, 

 

Figure 10. Test results with a combination of PF particles and 

ORBparticles 80:30.  

 
Figure 11. Test results with a combination of PF particles and 

ORB particles 100:40. 

 
Figure 12. Test results ORBPF-CV vs. Optical Flow. 

 
 

Figure 13. Test results of CSRT. 
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particularly when the target undergoes abrupt movements 

and encounters partial or complete occlusion. The 

subsequent experiment evaluated the CSRT algorithm to 

assess its performance.  

The findings in Figure 13 indicate a processing time 

per frame of 0.252350329 seconds, equivalent to 

approximately 4 fps, with an RMSE of 252.35 px. This 

constitutes the least effective performance among all 

algorithms for the target movement scenarios represented 

in this dataset. The tracking algorithm cannot maintain a 

lock on the target when it initiates rapid movement and 

exits the frame. This limitation arises because of the 

relatively prolonged processing time per frame, which is 

inadequate for a real-time system, rendering it highly 

vulnerable to losing the target under swift movement and 

frame disappearance conditions. 

CSRT performance is highly dependent on the 

quality of the spatial reliability map, which is affected by 

the accuracy of colour and texture segmentation. In our 

tests, CSRT showed degraded performance under 

conditions such as poor lighting, blurred images, and 

significant changes in target scale [44]. 

In low-light conditions, colour segmentation of the 

spatial reliability map becomes less accurate, leading to 

tracking errors. CSRT has difficulty maintaining tracking 

on blurred images, resulting in an RMSE of up to 252.35 

pixels. This result suggests that CSRT is not ideal for 

highly variable real-world conditions unless data 

preprocessing, such as image enhancement, is performed 

before encryption [45]–[47]. 

CSRT uses channel and spatial reliability for more 

precise tracking, but this approach increases the 

computational complexity compared to algorithms such 

as optical flow or particle filter [48]. In this study, CSRT 

showed an average processing speed of 4 fps, much lower 

than optical flow (30 fps) and particle filter (13 fps). 

Although slow speed, CSRT provides fairly precise 

tracking results when the target changes in scale and 

shape. The low processing speed makes it less suitable 

for real-time applications in systems with limited 

computing power, such as mobile robots that require fast 

response [49]. 

Comparison of the test results of the visual particle 

filter tracking method, optical flow, and CSRT are 

summarized in Table 1, with particle filter data taken at 

its best performance. We evaluate the strength of each 

algorithm by measuring the accuracy or error of tracking 

results on test video frames that simulate real conditions, 

though with certain limitations. These conditions include 

changes in scale, shape transformations, sudden 

movements, poor lighting, and blurry images. This 

approach enables us to assess each algorithm's capability 

to handle dynamic and complex visual challenges. The 

test result graphs for each method display these findings, 

highlighting their RMSE peak points. The peak of the 

RMSE point indicates that the tracker algorithm has lost 

its target, and after the peak of the RMSE, the tracker 

algorithm tries to get its target back. The graphs show that 

optical flow demonstrates the strongest ability to handle 

challenges, followed by particle filters and CSRT. 

IV. CONCLUSION 

This study demonstrates that optical flow-based 

unsupervised visual tracking, particularly employing the 

Lucas-Kanade algorithm, constitutes a highly efficacious 

approach for mobile robots in real-time applications. 

Among the three methods evaluated, optical flow 

performs best with a root mean square error (RMSE) of 

10.79 pixels at a computational speed of 30 fps, showing 

high strength against occlusion. This performance 

surpasses particle filter-based tracking, which achieves 

an RMSE of 36.7 pixels at 13 fps with moderate strength 

against occlusion, and CSRT, which has the poorest 

performance with an RMSE of 252.35 pixels at 4 fps and 

low occlusion resistance. The study's findings show that 

optical flow works well in regulated and dynamic 

settings, making it a good option for real-time reaction 

applications, including target locking, self-navigating, 

and dynamic video capturing. Future research may 

explore hybrid methodologies that combine the strengths 

of optical flow with learning-based models to enhance 

robustness in complex environments. For example, 

combining deep learning techniques with the Lucas-

Kanade method may enhance tracking effectiveness 

while dealing with sudden target motions and situations 

when targets vanish from the screen. 

Furthermore, adding further elements like texture or 

color information may improve tracking accuracy even 

more in difficult situations. The techniques become more 

useful in practical situations by addressing issues like 

computing efficiency and data dependency. While model 

pruning and quantization can minimize computational 

burdens for real-time applications, transfer learning and 

few-shot learning techniques can lessen dependency on 

huge labeled datasets. Furthermore, online learning or 

reinforcement learning may enable models to adapt 

dynamically to new data in real-time, improving their 

effectiveness in dynamic and unpredictable 

environments. Another solution is integrating traditional 

methods with CNN-based methods, which might be a 

good way to provide more flexibility and tracking 

accuracy, especially in dynamic and complex situations. 
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