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Abstract

This paper presents a new application of the Kalman filter with hypothesis testing for a fast and robust model-based
estimator for measuring level interfaces of atmospheric gravitational oil-water separator tanks. A newly developed semi-
empirical linearized model is applied in the estimator algorithm. A multi-model hypothesis-testing algorithm for covering more
scenarios was deployed. The proposed method provides a cost-effective and straightforward solution for estimating all state
variables in an oil-water separator. Our evaluation results demonstrate that the proposed algorithm achieves high accuracy with
an observation error of less than 2% and a false alarm rate of 3.3% under 50-70% working conditions. Furthermore, the estimator
can effectively handle process noise with a 10% feed offset. The proposed platform requires only a few installed sensors yet can
accurately estimate unknown parameters. The proposed approach offers a robust and practical soft sensor solution for
gravitational oil-water separators.

Keywords: semi-empirical model, multi-model hypothesis testing, Kalman filter, gravitational oil-water separation, state
estimation, measurements

I. INTRODUCTION

Despite renewable energy's rising popularity [1], oil
is still one of the primary energy sources, accompanied
by coal and biomass fuel [2], especially in developing
countries [3]. Petroleum is one of the most valuable
commodities in the world due to its value as a
transportable, dense energy source, the primary
ingredient in many industrial chemicals, and the power
source for the great majority of vehicles [4]. The limited
oil resources, or the energy sources in general,
encourage oil producers to adjust strategies and increase
production efficiency for all their facilities [5], [6].
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One of the primary production processes is the
gravitational separation process. The role of an oil
production facility is to separate the oil well stream into
its three phases (oil, gas, and water), and to either
convert these phases into commercially viable products
or dispose of them in an environmentally responsible
way. Oil-specific gravity and oil sourness are the two
parameters used to evaluate the quality of the produced
oil. Higher specific gravity and less sourness indicate
higher oil quality, which means larger oil prices and
higher oil sales earnings [7].

Gravitational separator tanks are commonly used in
primary oil production facilities to separate water from
crude oil, as illustrated in Figure 1. This technology can
minimize the water contents; hence, the following
secondary facility can eliminate the remaining water.
Most of the gravitational tanks are manually operated in
the batch separation process due to continuous operation
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requiring a high-end and complex controlling system,
leading to expensive instrumentations [8]. Such
investment is avoided due to the low economic value of
the primary production facilities despite their population
being far more significant than secondary production
facilities.

Continuous water separation systems are the most
efficient methods to achieve separation compared to the
batch separation technique [9]. The drawback was that
these systems required instruments to measure the oil-
water interface level and control the final oil production
quality. For example, interface measurement using an
automatic tank gauge is one of the standard methods in
the industry [10]. The main challenge of this method is
the high investment and maintenance costs.
Alternatively, Arvoh et al. [11] proposed using multiple
pressure sensors and a minimum variance technique to
estimate the level interface. Despite the approach being
more economical than another industrial-grade sensor,
considerable pressure sensor numbers must be installed
to obtain high accuracy. Another challenge for interface
measurement is the requirement of a water content
sensor to ensure the quality of the separation process
[12]. The standard water content sensor's accuracy
usually drops as the water content significantly changes.
Ultrasonic sensors for measuring the interface or
emulsion can be a solution by employing tomography
methods, but it is not too practical because it requires
complex imaging equipment [13], [14]. In brief, the
highly accurate level measurement using physical
sensors can only be achieved using a relatively high
number of sensors [15].

A state estimator, as one of the soft sensor methods,
can be a cheaper solution by predicting the level
interface by installing minimum sensor numbers. If
reducing cost is the primary concern, it can be a suitable
choice by reducing the need for measurement devices
[16]. For example, Backi et al. [17] investigate to
determine the in-flow measurement on a three-phase
gravity separator. The same research group also proves
that the estimation technique can estimate unmeasured
disturbance in the separation process [18]. Chonwattana
et al. [19] attempted to measure and control the interface
level of the palm oil and water separator system using a
state estimator within its model predictive control (MPC)
system. Even though the separation process differs from
that of crude oil separation system, the model-based
control system works well. However, the MPC remains
questionable in terms of noise and robustness. Therefore,

an alternative algorithm is needed to increase the
estimator's adaptability against process disturbances.

The model-based estimator can be accurate to a
certain degree since it is heavily related to its model
accuracy. The system's nonlinearity reduces estimation
accuracy on process parameter changes, such as inlet
flow rates, concentrations, and other disturbances [20].
The existing works for the oil-water separation process
model mainly focused on a three-phase pressurized
separator tanks system [17][18] and ultrafiltration
process [21]. However, the models are complex and
highly nonlinear, so they are prone to estimation errors
due to process disturbances or changes. Moreover, the
types of equipment used in oil production facilities are
limited due to high investment costs. The models may
offer highly accurate predictions for pressurized tanks.

The pressurized part adds to the computational
burden, considering the model’s complexity. There
never be a deep study for a continuous oil-water
gravitational separation in an atmospheric tank model
despite the high population of that equipment in the
field. The development of this equipment's
mathematical model can serve as the basis for
developing a soft sensor, which is expected to help
increase the effectivity of the existing gravitational oil-
water separator tank.

An algorithm for the soft sensor must be developed
for fast, robust, and accurate level estimation using a
simplified semi-empirical atmospherically gravitational
separator-type model with a two-phase separation can
be developed. For fast state estimation, the Kalman
filter can be employed for fast and robust estimation
[22]. This algorithm must also increase estimation
accuracy even when using simplified mathematical
models. Hypothesis testing can cover various scenarios,
such as process variances, disturbances, and out of
ranges [23]. A combination of the abovementioned
methods can be employed to achieve the demands.
However, applying Kalman filters with hypothesis
testing with a linearized mathematical model in an
atmospheric gravitational separator is rarely found in
the literature.

Therefore, this study aims to develop a new
estimator system for measuring all level interfaces in a
continuous atmospheric gravitational separator system
using the Kalman filter and hypothesis testing
algorithms. A simplified linear mathematical model of
the separator with a two-phase separation approach is
also proposed as a basis of the estimator algorithm.
Model simplification is a common practice in the
process control systems with low frequency or very long
time constant [24]. This research can support low
computational burden algorithms with relatively low-
cost instrumentation. The method's accuracy and
adaptability from a process disturbance are evaluated
using a numerical simulation and compared with its
nonlinear counterparts in several operations conditions.

This research contributes to developing simplified
mathematical models of gravitational separator tanks
with a two-phase separation approach. The model is
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constructed by combining analytical and empirical
approaches. The experiment was conducted to
determine the model's parameters under several
operating conditions. These models estimate all
variables, including water, emulsion, and oil, using
relatively low-cost and basic instrumentation in the
industry. Therefore, the proposed method is expected to
enhance the efficiency of overall oil production facilities.

In the following sections, the discussion of
constructing the proposed process model and the state
estimation algorithm is carried out. The simulation
scenario is also discussed in Section 2. Section 3
explains the experiments conducted to obtain process
parameter models, as well as the simulation results in
under various operation scenarios. Last, the conclusion
of our research is explained.

II. MATERIAL AND METHODS

The estimation algorithm consists of several parts:
the mathematical models, Kalman filter, and hypothesis
testing algorithm, as shown in Figure 2. The suggested
method aims to reduce the expense of purchasing
complete measurements for continuous oil-water
separators. This method eliminates requiring specialized
instruments to detect interface levels while retaining
measurement precision. The estimation technique used a
linear approach to simplify the mathematical model and
reduce the need for additional computing power. We
included a hypothesis testing method to overcome the
restriction of linearized models by detecting whether the
estimator remains within the designed operational range.

A. Oil-Water Separation Process Model

This study simplifies the process by combining
emulsion and dense-packed zone into a single state
variable shown in Figure 3(b). The build-up of water at
the tank's bottom was regarded as a first-order system
response [25], as shown in Equation 1:

—= M
where is the emulsion volume, is the residence
time, and  is the separator velocity constant. Assuming

the cross-section area of an atmospheric tank is uniform
at all heights, the residence times and the separation
velocity are all constant. The rate of emulsion level ()
decreasing can be represented using a first-order

No measurement/

Batch Separator Tank
_:‘[> System I:> Manually measured/

{common use) Automatic tank gauging

Oil Water Mixture
(Flowrate, Concentration)

Continuous Separator|
Tank System
(proposed)

Basic Measurements

;J|>(quuld Level Sensor, Qil Way Pressure
Water Way Pressure)

Linear Kalman
: Model 1 Filter 1
H Hypothesi:
i Tesling :{>
AGOIthm | state Estimation and
Linear :‘Ka\man
Model n Filter }—>

Out of range detection
Figure 2. Proposed Estimation Algorithm in this Research

(Water Level,
Qil Level,
Emulsion Level)

Level

Dense packed zone

Time

@

- hw--

—h—

Level

Water e

Time
(b)
Figure 3. (a) Hartland's Batch Separation Model (b) Proposed
Simplified Separation Model
equation simplified by separator constant (), as shown
in Equation 2:

—=- @

A similar approach is used for water level (4,) and
oil level (%,) in meter (m). Both variables are affected
by the separator constant proportional to their
concentration () set yield shown in Equation 3:

L, sl e

A system identification procedure was assisted in
determining the separation constant and the oil fraction.
The method for identification analysis is presented in
the next section. Equation 3 served as a basis for
building the continuous separation system model. The
difference between continuous and batch systems is the
existence of inlet and oil-water outlet flows, as
illustrated in Figure 2. The inlet flow material consisted
of oil, water, and emulsion. These components flow
slowly toward the outlet and gradually separate. At the
outlet side, oil and water were assumed to be separated.
Respectively, the outlet flows to send the oil and water
into the atmosphere. The inlet mass flowrate was
described in Equation 4:

= -1,

)+(C) ) )
where is the inlet mass flow rate ( /) derived
from inlet density and inlet volume flowrate (/).

The inlet density is a combination of water and oil
density ( / 3) that varies with oil concentration
() in percent (%). Equation 5 represents the oil volume
flowrate (Qo) through the first outlet as follows:
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=4J2. (C + + )= ) &)
where ; is the oil outlet cross-section area in m?, and

is the separator medium cross-section area in m2. The
output flow rate is influenced by constant gravity g
(. 7 ®) and the outlet height ; in m. On the other
hand, the water volume flow rate is a function of the
total height of liquids and their relative densities, as
shown in Equation 6:

:—Z.Jim + o+ ) ©

Combining Equations (3), (4), (5), and (6), the
continuous separation nonlinear model was obtained in

Equation 7:
Lo+ 1

2+ - o
2.
R

@) S

Using the Taylor series method, the linearized
version of Equation 8 was obtained as follows:

1 12 13 L
= I 21 22 231. + (g ®)
31 32 33 0

where:
1 =" )
2= 13=0 (10)
_ _ 2 1

n= L me—e— (D)

2
2= 23— \/2(_‘_—1_‘_)_1 (12)
a=01- ) - 22 (13)

Fc +

2 2
= =— 14
2= 33 ”\/2;'(( PR (14

This linear model is specified by the point where all
state variables are linearized at the linear point height

where h; = , that used to linearize the
model is at 50% separator overall height. Those values
were determined by the standard design practice of 50%
nominal operation design in mind.

For the measurement model, pressure and level
instruments were used. Level measurement was utilized
to determine the total fluid height in the tank, which

reflects the fluid volume in the tank, and was paired
with total pressure measurement, which may indirectly
indicate fluid weight. Another pressure measurement
was installed to measure the oil's way pressure because
this approach may reflect the height of the oil phase.
The level measurement model can be described as the
total of all state heights with Equation 15:

1=[1 1 1][ l

Meanwhile, the pressure at the water outlet is the
total mass of each height state, as shown in Equation 16:

e

Last, oil outlet pressure is described as mass at the
oil phase's height, as expressed in Equation 17:

| |

B. Kalman Filter and Hypothesis Testing
Algorithm

(15)

(16)

3= [0 (17

The estimation procedure utilized a combined
Kalman filter and hypothesis testing algorithms to
determine the closest operating point and adjust system
parameters accordingly. The Kalman filter algorithm
was well developed [22], and the extended Kalman
filter methods were available for highly nonlinear
systems such as separation systems [26]. However, the
computational complexity of the known nonlinear
Kalman filter limited its realization in microcontroller-
based instruments [27], [28]. Therefore, this research
employed the linear Kalman filter algorithm on the
multiple-linearized separator models to accommodate
both the separator system's nonlinearity and the
microcontroller's computational capability.

Figure 4 illustrates the proposed state estimation
method using the Kalman filter and a hypothesis testing
algorithm. The actual process simulation was
represented by its nonlinear model in a discrete state
space, derived using Runge-Kutta with fourth-order
methods ( , , , ). Suppose the general statement
of the linear model is described in Equations 18 and 19,
The state estimation | is determined by predicted
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state | -1 and | —; from a linear model corrected by
in the measurement simulation as describe in

Equation 20.

| -1~ —qp 1t -1 (18)

| -1~ |1+ -1 19)

1= g+t (= ) (20)

where | —; is the calculated state variable from state
space in Equation 8 and | _; is the measurement
model calculation described in Equation 15 — 16. as

Kalman gain is derived from the noise covariance
mentioned in Equation 19:

= 1 (

where | —1 is the process noise covariance, and R is
the measurement noise covariance. The process noise
covariance is not identified by this research. However, it
was determined by the difference between the oil
concentration and the parameter used in Kalman filter
(KF) algorithm. The measurement noise is given in the
simulation using Gaussian white noise in the simulated
plant and selected by 1% covariance in the KF design.

Linear estimation for a nonlinear system is limited
by its operation range. In other words, its accuracy will
be reduced if it is used to estimate state variables far
from the respective linearization points. Several
linearization’s were used at various points along the
height of the tank to widen the estimation range. Since
this research used multiple-linearized models
simultaneously to estimate the process, a hypothesis test
was required to select the most accurate estimator. This
method was widely used, especially to identify
anomalies within the boundary of expected variables,
such as in work by Ranganathan et al. [29] in the
biomedical research area and Perkins et al.[30] in the
chemical hazard research area. Since the anomaly in
each separator is calculated, the most accurate estimator
can be decided.

The hypothesis testing algorithm to select the most
accurate estimator is shown in Figure 5. The selection
was based on a null hypothesis that examined the
innovation covariance of the process measurement, and
the estimator should be minimum as follows in Equation
22:

-1+ )_1

2

= (22)

where is the prediction error, and ~*is the error

covariance. Then, by using Equation 23:

[ 1= = [-1 + (23)
where [ ] is the covariance of the process model,
and R is the covariance of measurement noise

representing measurement accuracy.

As illustrated in Figure 5, only one estimate should
be produced through this process. Every testing iteration
uses 10 data points to calculate innovation covariance.
If one iteration did not produce exactly one correct
estimator, the iteration was repeated up to five times. If
the fifth iteration still produced two or more estimators,
the one with the minimum cumulative error variance
was selected as the correct one.

C. Experiment and Simulation Setup

As described in the previous section, the
performance of this algorithm is tested using MATLAB
simulation. A nonlinear model is used to simulate a
natural separator system. The separation constant
() should be identified through an experiment to
obtain an accurate model parameter of a continuous
atmospheric tank. The experiment batch separation is
used to obtain time-constant parameters used in the
simulation is similar to Das and Biswas's research [31],
which was conducted by mixing oil and water at a
predetermined ratio and a certain height, as illustrated in
Figure 6. The mixture is allowed to separate naturally.
The emulsion height is measured every 10 seconds until
it has entirely separated. This way, a dynamic response
of oil-water separation can be obtained. This procedure
is repeated at different concentrations. If the response of
the oil-water separation complies with Jeelani et al.
model [32], the rate of separation can be described as a
first-order dynamic system using Equation 24:

)= (24)

The minimum sum of squared error using Equation
25 between the experiment data and the approximate
curve is used to obtain the optimal time constant
parameter.
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Accurate models and parameter values were
required to achieve reliable simulation accuracy. Those
characteristics were the separator tank's nominal design.
Resident time is the primary concern in separator tank
design. Odiette et al. [33] established a relationship
between residence duration and inlet flow rate since a
quicker mixture requires more area (A). As established
by the batch separation experiment, the cross-section
area should be sufficient for the resident time required
for the mixture to separate. Cross-section tank area (A),
emulsion level (), and total liquid level ( ), as
shown in Figure 7, must all be determined at a given
concentration. This parameter is used in the state
estimator's simulation.

The separation parameters obtained were used for
the estimator model. The difference is that those models
and parameters are linearized into several operating
conditions. The estimation result is then compared to the
nonlinear model simulation. The hypothesis testing
method selects the most accurate estimation in every
simulation condition. This study primarily uses
simulation with parameters acquired from a batch
separation experiment utilizing a diesel fuel and water
combination. This experiment should yield reliable
results, assuming the diesel fuel and water are not
polluted. The initial nonlinear model that employs that
parameter is anticipated to approximate the natural
system.

The performance of this method is evaluated by
measuring the estimation accuracy in several conditions.
The first condition is the design operating condition of
the separation process with a 10% flow rate variation, as
it becomes the basis of Q covariance matrices for the
KF design. The enhancement algorithm is compared to
the Kalman filter to show the benefit of the hypothesis
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Figure 7. Continuous Separator Tank Model

v

testing enhancement. Second is the estimator's
capability to estimate state variables with inlet
disturbance in the form of oil-water concentration. Last,
the estimator's capability to determine that process
conditions are already out of bounds. These three
scenarios were tested during the simulation.

III. RESULTS AND DISCUSSION

As mentioned in the previous section, several
simulation scenarios are conducted to evaluate the
proposed algorithm's performance, and the simulation
parameter is provided from Dbatch separation
experiments.

A. Batch Separation Experiment Result

The batch separation experiment results in Figure 8
indicate that changes in the interface level between oil
and emulsion comply with Jeelani et al. batch separator
model [32] after the liquid has filled the tank. Five
separate concentration studies were carried out, and all
of them consistently showed that the change interface
level approximated the first-order response. As a result,
the first system general equation indicated in Equation
22 may be utilized to find the separation constant ().

This method gives a = 0.0286 in 50% oil
concentration mixture. The result is an approximate
curve shown in Figure 8, and the average error for the
data was 5.4%. This curve gives the approximate
residence time required to complete the oil separation
from the rest of the mixture. Combining the residence
time with the inlet flow rate would determine the size of
the continuous atmospheric tank.

Table 1 shows the model parameters illustrated in
Figure 6 for a cross-section tank area ( ) of 1000 mm
and an emulsion height of 80 mm at steady conditions.

120 =
Batch Separation Process
< 100 + data =—model
£
= 80
=
o
2 60
c
<
2
2
& a0
200000000004
0 s
0 400 800 1200 1600 2000
Time (second)
Figure 8. Simulation and Data Comparison in one of the
Experiments
TABLE 1
SEPARATOR TANK SIMULATION DESIGN PARAMETER
Parameter Value Unit
Inlet Flowrate () 1.94 It/min
Total Height ( 1) 320 mm
Emulsion layer Height () 80 mm
Cross section area of oil way ( 1) 6.99 mm?
The cross-section area of the waterway 3.55 mm?
(2)
Oil density () 850 Kg/m?
Water density () 1000 Kg/m?3
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Inlet flowrate at given tank parameter
Equation 8 at A =0 while
constant obtained by the experiment.

is obtained by
is the separation

B. Estimator Simulation Result

The first scenario is a simulation within desired
design operating conditions, which is within 50-70%
feed flow rates, and three estimators in 50%, 60%, and
70% linearization points are used to estimate all three
states, which is emulsion layer height, oil layer height,
and water layer height. It is shown in Figure 9 that most
estimators cannot withstand process changes outside
their design parameters; even the covariance of Q
matrices is determined by the difference in the
parameter. That is a common weakness for the Kalman
filter when facing a nonlinearity problem [34], and the
process parameter differences due to the linearity cannot
be considered as process noise with normal distribution.

The hypothesis testing algorithm is used on all
estimators to select the most accurate estimator on each
condition. Figure 10 shows the selected estimation in
each condition. From the selection results, most of the
selections match each condition. However, a transient
area between each condition cannot decide the accuracy
of the selected estimator [35].

Figure 11 shows that the proposed method can
accurately estimate each state variable using the
hypothesis algorithm by selecting the estimator with
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Figure 11. Final Estimation Result for Three State Variables

minimum covariance. The algorithm provides accurate
estimation in most conditions. The inaccuracies occur in
transient conditions, which are not within any estimator
parameter constraint. The root means square (RMS)
calculation provides that the inaccuracies during
transient conditions are no more than 3.3%. The oil
layer estimation provides the most accurate state
estimation since a pressure measurement in that layer
can directly correct the oil layer estimation using
Equation 17.

More simulation is needed to raise confidence in
the hypothesis testing algorithm. Table 2 reveals that the
higher the confidence, the more likely false alarms exist.
The number of iterations and how frequently the
minimum algorithm is used while deciding the selected
estimator.

Table 3 shows another simulated variable: the
influence of measurement noise, which affects the
determination of covariance R in the KF algorithm. This
testing procedure rejects all estimators by altering their
accuracy by more than 1%, even though the estimation

TABLE 2
ESTIMATION COMPARISON IN VARIOUS DEGREES OF
CONFIDENCE
Degree of | Type one | Type two | Minimum
Confidence fault/false fault/miss Algorithm
alarm alarm Used
90% 0.0% 28.7% 28.7%
95% 33% 20.7% 24.2%
99% 30.9% 0.00% 30.9%
TABLE 3
ESTIMATION COMPARISON AT VARIOUS MEASUREMENT
ACCURACY.
Manipulated Measurement Error
Variable
1% 2% 3% 4% 5%
heaccuracy
2.8 9.0 7.9 8.1 9.2
(mm)
h, accuracy
0.7 14 2.2 2.7 34
(mm)
hy accuracy
22 73 6.2 5.8 7.6
(mm)
Hypothesis
Testing 11.6 97.5 100.0 100.0 100.0
rejection (%)
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accuracy is reduced slightly. The rejection occurred
since the hypothesis testing algorithm already
considered the measurement error. If the measurement
error exceeds the considered measurement noise, the
hypothesis test rejects the result. This characteristic
makes this algorithm commonly used in anomaly
detection [36].

The second scenario simulates the changes in oil
concentration in input. We use a 10% concentration
offset in the input parameters. This scenario aims to
determine the effects of process change on state
estimators since raw material going into the separators
never has a constant concentration [37]. Figure 12
shows that state estimation produces more inaccuracies
than the previous simulations. However, from the RMS
calculation, the estimator's accuracy is at most 5.08%.
Those inaccuracy results are sufficient since some
market-ready sensors provide a 5% measurement error.
The parameter offset brings additional uncertainty,
which affects the selection algorithm, as shown in
Figure 13.

The estimator selection shown in Figure 13
suggested that the algorithm needed help to pick the
estimator confidently. Nonetheless, as shown in Table 3,
observation accuracy within 1% of measurement noise

Emulsion Layer Height

Oil Layer Height
300
£
S200
2
100F 1
[ 1000 2000 3000 4000 5000 6000
Water Layer Height
120 —
E
£ 100} Output| |
R
&0 : : : :
[ 1000 2000 3000 4000 5000 8000
- Flow Rates at 40% concentration
T4 - ;
c
E Input Flow Rates
=40 ]
e _—’_,-’—/
% 2
= ; ; | ! ;
0 1000 2000 3000 4000 5000 6000

Time(s)

Figure 12. Hypothesis Testing Algorithm's Estimation Result in
Concentration Offset

Hypothesis Selection Result

=

w

Model Number
- &)

o 1000 2000 3000 4000 5000 6000
Time(s)

yields less than 3% inaccuracy, but the hypothesis
testing algorithm cannot confidently detect anomalies in
the process. The algorithm confidence is 11.6%, which
can still give an alert within the error situation. However,
since the purpose of the algorithm focused on estimation
accuracy, the algorithm proves that the estimator can
withstand 10% process noise deviation.

The last simulation is to determine the accuracy of
the state estimator if the process input is outside its
designed operating range. Input flow rates fall from
50% under normal operating conditions to 40% and rise
to 70%. Figure 14 depicts the simulation results, which
show that no estimator can accurately measure the state
variables in the 40% operation range. The error caused
by nonlinearity significantly affects the process when
feed flow rates fall under its design operation. Mohayesi
et al. [38] also confirm an optimum condition for a
separation process mathematical model that depends on
the separator design. Therefore, the estimation will
never be accurate, no matter what the hypothesis
algorithm chooses.

The estimator's accuracy relies on the model's
accuracy since the hypothesis testing algorithm
calculates the probability of fault within the designed
constraint and covariance[39]. To prove that the model
improvement is the solution for anomaly conditions, a
4th model is added to the hypotheses testing algorithm.
Fig 15 shows that the fourth estimator can estimate
accurately when the process is outside the design
condition.

After the fourth estimator is added to the hypothesis
algorithm, the estimation during the last scenario is
shown in Figure 16. The selected estimator follows the
fourth estimator when the process is inside its respective
area. Some errors occurred mainly caused by the
transient condition between two estimators close to each
other. The estimation RMS accuracy is no more than
2.5%, which proves that the estimation accuracy will be
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Figure 14. Estimations when Process Flowrates Outside its Design
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Figure 16. Estimation of Hypothesis Testing Algorithm after the
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improved with more estimators used for the selection
algorithm.

IV. CONCLUSION

State observers enhanced with the hypothesis
testing method on continuous oil-water separator has
been simulated with nominal operation's oil content
liquid that flows at 3.9 L/min at maximum. The
proposed method, which was tested on 50-70%
operation conditions, can estimate all state variables
with less than 3.5% observation error and 3.3% false
alarm. Furthermore, this estimator could withstand

process noise as input concentration by 10% differences.

Another benefit of this method is that it can detect
failure from defective measurements.

This study shows that observing all state variables
on oil-water separators uses two pressure sensors and

one level. However, the linearized model operation
range lowered the precision of this method. If
hypothesis testing is performed outside of optimal
conditions, missed alarms are unavoidable. The
improvement using an additional model that increases
the hypothesis testing option is one of the methods
required. That is why more research related to other
measuring methods and additional operation models
were required to improve reliability. Another filter-
based method, or the usage of the currently emerging
Artificial Intelligence technique, can be an additional
solution to adhere to the weakness of our methods,
especially to increase the accuracy of the unknown
parameter of the models [40]-[42].

NOMENCLATURE

height of emulsion layer (mm)
height of oil layer (mm)
height of the water layer (mm)
emulsion volume (It)
1 Oil outlet's cross-section area (mm?)
2 Water outlet's cross-section area (mm?)
Atmospheric tank cross-section area (mm?)

Gravitational acceleration (m/s?)

Inlet Flow rate (It/s)
1 Total liquid height (mm)
2 Water outlet pressure (kg.m/s?)
3 Oil outlet pressure (kg.m/s?)

Kalman gain (-)
Prediction covariance (-)
Innovation matrices (-)

[ ] Error covariance (-)

Greek symbols
Separation velocity constant ( - )
Resident time (s)
The separator time constant (1/s)
Oil concentration (-)
Oil density (kg/m?)
Water density (kg/m?)
Emulsion density (kg/m?)
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