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Abstract 

Remote sensing imagery is a very interesting topic for researchers, especially in the fields of image and pattern recognition. 
Remote sensing images differ from ordinary images taken with conventional cameras. Remote sensing images are captured from 
satellite photos taken far above the Earth's surface. As a result, objects in satellite images appear small and have low resolution 
when enlarged. This condition makes it difficult to detect and recognize objects in remote-sensing images. However, detecting and 
recognizing objects in these images is crucial for various aspects of human life. This paper aims to address the problem of remote 
sensing image quality. The method used is a convolutional neural network. Our proposed method consists of two main parts: the 
first part focuses on feature extraction, and the second part is dedicated to image reconstruction. The feature extraction component 
includes 25 convolutional layers, whereas the reconstruction component comprises 75 convolutional layers. To validate the 
effectiveness of our proposed method, we employed the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) 
as evaluation metrics. The test datasets consisted of Landsat-8 images, which were segmented into three regions of interest (ROI) 
of sizes 16×16 pixels, 24×24 pixels, and 32×32 pixels. The experimental results demonstrate that the PSNR/SSIM values achieved 
were 28.94/0.822, 30.24/0.089, and 33.24/0.925 for each respective ROI. These results indicate that the proposed method 
outperforms several state-of-the-art techniques in terms of PSNR and SSIM. 
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I. INTRODUCTION 

Artificial Intelligence (AI) primarily focuses on 
developing computerized systems that enable software to 
work like living creatures in solving problems. Regarding 
decision-making techniques, AI algorithms can be 
divided into two broad categories: algorithms that imitate 
animal behavior [1] and algorithms based on human 
thinking [2]. The first group includes Ant Colony 
Optimization [3], Particle Swarm Optimization [4], 
Genetic Algorithms [5], Bee Colony Optimization [6], 
and others. Meanwhile, algorithms that imitate humans 
in solving problems include fuzzy logic[7], Support 
Vector Machines (SVM) [8], Expert Systems [9], 
Artificial Neural Networks (ANNs) [10], [11], and more. 

One branch of AI that has developed rapidly in the 
past decade is Deep Learning (DL), which is an extension 
of ANNs [12]. This field gained significant attention 
following the success of several ANN models in the 
ILSVRC competition, including AlexNet (2012) [13], 
Clarifai (2013) [14], GoogLeNet (2014) [15], and ResNet 
(2015) [16]. Building on this success, deep learning has 

been widely applied in various fields, such as 
classification, forecasting, image enhancement, remote 
sensing, and more. 

On the other hand, the problem of detecting and 
recognizing objects in remote-sensing images has been a 
major focus for researchers over the last three decades. 
The main goal of object detection and recognition in 
remote-sensing images is to quickly and accurately locate 
and identify objects of interest to survey within the vast 
expanse of remote-sensing images. 

 Remote sensing technology has advanced 
significantly, enabling the capture of intricate details 
such as contours, colors, textures, and other distinctive 
attributes [17]. Nevertheless, object detection algorithms 
face numerous formidable challenges. This complexity 
arises from the differences in acquisition methods 
employed for remote optical sensing imagery compared 
to those used for natural imagery. Remote sensing 
imagery utilizes sensors, including optical, microwave, 
or laser devices, to gather data about the Earth's surface 
by detecting and recording radiation or reflections across 
various spectral ranges. In contrast, natural images are 
captured using electronic devices, such as cameras, or 
sensors that capture visible light, infrared radiation, and 
other forms of radiation present in the natural 
environment to obtain everyday image data. Unlike 
natural images captured horizontally by ground cameras, 
satellite images are obtained from an aerial perspective, 
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providing extensive imaging coverage and 
comprehensive information about the Earth's surface in 
the areas where the images are acquired. 

Given those characteristics, detecting and 
recognizing objects in remote-sensing images represents 
one of the most complex tasks in pattern recognition. 
This is due to the satellite's distant position, causing the 
object to appear very small. Despite efforts that have 
been made to enlarge the remote sensing image, the 
resulting image of the object still has low resolution. 
These low-resolution object images present a challenge 
in object detection and recognition based on remote 
sensing images.  This is because a subtle difference 
between pixels in low-resolution images makes it 
difficult for computers to distinguish between individual 
objects effectively. 

This study aims to improve the quality of object 
images in remote sensing images. Improving image 
quality is essential for addressing the challenges 
associated with object detection in remote-sensing 
images. This enhancement is typically evaluated using 
two standard metrics in image processing: peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM). In 
this context, higher PSNR and SSIM values indicate 
superior image quality. 

Several methods, including bicubic interpolation, 
SRCNN, and DCSCN, have been proposed to address the 
problem of increasing image resolution. However, the 
results still require improvement, especially when 
dealing with extremely low-resolution images, such as 
object images in remote sensing data. 

The main contribution of this research is a relatively 
simple convolutional neural network (CNN) architecture 
that uses convolutional layers to improve the quality of 
remote-sensing images. This architecture can be 
combined with various architectures to recognize objects 
in remote-sensing images. 

The rest of this paper is structured as follows. 
Section 1 introduces the introduction and the motivation. 
Section 2 discusses the proposed method in detail. 
Section 3 presents the experiments, and the final section 
provides the concluding remarks. 

II. METHODS 

A. Datasets 
The datasets used in this study are of two types, 

training data and testing data. Data for training comes 
from Yang et al. [18] and the Berkeley Segmentation 
Database [19]. Both databases contain high-resolution 
images, and the data sizes vary. Both databases are 
commonly used in image resolution improvement 
research, such as in [20], [21], [22].  

The next data set is for testing. It is obtained from 
remote sensing images produced by the Lansat 8 
Satellite, downloaded from the official website of GIS 
Geography (https://gisgeography.com/landsat/). The 
illustration of the image for the dataset is shown in Figure 
1. 

The image can be downloaded by following these 
steps: 
Step 1. Set your area of interest in the "Search Criteria" 

tab 

Step 2. Select your data to download in the "Datasets" tab 
Step 3. Filter your data in the "Additional Criteria" tab 
Step 4. Download free Landsat imagery in the "Results" 

tab. 

B. Architecture of Proposed Method 
To solve the challenge of detecting small objects in 

remote sensing images, Gan et al. [23] proposed a 
method that employed a novel edge-enhanced super-
resolution GAN (EESRGAN) to enhance the quality of 
remote sensing images. The method integrated various 
detector networks in an end-to-end approach. The 
detector loss was backpropagated into the EESRGAN to 
optimize detection performance. Furthermore, Zhao et al. 
[24] proposed a method consisting of two parts of 
architecture: a degraded reconstruction-assisted 
enhancement branch and a detection branch. Hereinafter, 
Chung, et al [25] proposed a method using a bicubic and 
generative adversarial network (BLG-GAN).  

In this research, we propose a method consisting of 
two main parts: feature extraction and reconstruction. 
Both parts consist of deeply convolutional layers. The 
purpose of the feature extraction network is to extract the 
most relevant features of the image, while the 
reconstruction network aims to enhance image resolution 
through deconvolution. Overall, Figure 2 shows the 
framework of the proposed method, with details of the 
first and second parts shown in Figures 3 and 4, 
respectively. 

1) Bicubic Interpolation 
Bicubic interpolation is employed to enlarge an 

image by a specified scale factor prior to its processing 
by a CNN. For instance, a low-resolution image can be 
upsampled to a higher resolution using this method. This 
step provides CNN with a larger input image, allowing it 
to concentrate on enhancing the details and overall 
quality of the interpolated image. 

In cases where a low-resolution image is directly 
input into the CNN without prior interpolation, the 
network may require additional layers or greater 
complexity to effectively learn from the data and produce 
a high-resolution output. Bicubic interpolation alleviates 
this challenge by offering an image with an initially 
higher resolution, thus enabling CNN to focus on refining 
quality aspects, such as texture details and object edges, 
rather than merely enlarging the image. 

In summary, the function of bicubic interpolation is 
to furnish a larger image as a foundation, thereby 
allowing CNN to prioritize the improvement of image 
quality over simple image enlargement. 

Figure 1. Capture of the remote sensing image from Landsat 8. 



114  •  Julian Supardi, et. al. 
 

 
p-ISSN: 1411-8289; e-ISSN: 2527-9955 

2) Feature Extraction Layers 
The feature extraction network consists of 25 

convolutional layers. Each layer employs a kernel size of 
3×3, but the number of kernels per layer varies. 
Specifically, the first layer contains 139 kernels, and each 
subsequent layer decreases by 3 kernels. Table 1 shows 
the kernel and bias used on feature extraction layers, and 
Figure 3 shows the architecture of CNN in the first part 
of the proposed method. 

3) Reconstruction Layer 
In the reconstruction network, the feature maps 

generated in the first part are manipulated to enhance 
image resolution. See Figure 4, which comprises two 
convolutional neural network segments: the first segment 
(the left segment) contains a single convolutional layer, 
while the second segment (the right segment) consists of 
seventy-five convolutional layers. Additionally, the 
second segment concludes with a convolutional layer 
featuring a 1×1 kernel size. The architecture of the CNN 
in the second part of the proposed method is detailed in 
Figure 4. Here, OP-1 is output from the feature extraction 
layer. Table 2 shows the kernel and bias used in the 
feature extraction part. 

Furthermore, the detailed steps of the proposed 
method are outlined in Algorithm 1. 
Algorithm 1: 
Step 1: Input Image Enlargement: Enlarge the small input 

image using the bicubic interpolation method 
based on the desired scale. 

Step 2: Perform feature extraction by running all 
convolution operations in the first part of the 
architecture. 

Step 3: Combine all features generated by all channels 
through a concatenation operation to form a 
single image. 

Step 4: (a) Run convolution operations on the left 
segment of the image in the second part of the 
architecture. 
(b) Run convolution operations on the right 
segment of the image in the second part of the 
architecture. 

Step 5: Combine the results of the left and right segment 
operations into a single image. 

Step 6: Apply a 1x1 convolution to transform the 
combined output image from the second part of 
the architecture. 

Step 7: Add the initial bicubic interpolation image to the 
transformed image from Step 6 to finalize the 
image reconstruction. 

 
Figure 2.  Framework of the enhancing remote sensing image 

resolution using CNN. 

TABLE 1 
DETAILED CONVOLUTIONAL LAYER ON FEATURE EXTRACTION 

NETWORK 
No. 

Layers 
Size of 
Kernel 

Number of 
Kernels 

Number 
of Biases 

1 3×3 139 139 
2 3×3 136 136 
3 3×3 133 133 
4 3×3 130 130 
5 3×3 127 127 
6 3×3 124 124 
7 3×3 121 121 
8 3×3 118 118 
9 3×3 115 115 
10 3×3 112 112 
11 3×3 109 109 
12 3×3 106 106 
13 3×3 103 103 
14 3×3 100 100 
15 3×3 97 97 
16 3×3 94 94 
17 3×3 91 91 
18 3×3 88 88 
19 3×3 85 85 
20 3×3 82 82 
21 3×3 79 79 
22 3×3 76 76 
23 3×3 73 73 
24 3×3 70 70 
25 3×3 67 67 

TABLE 2 
THE DETAILED KERNEL SIZE OF CONVOLUTIONAL LAYER ON 

RECONSTRUCTION NETWORKS 
Layers L1 R1 R2 … R75 L2 

Size of Kernel 1×1 1×1 3×3 … 3×3 1×1 
Number of 
Kernels 32 32 32 … 32 1 

Number of 
Biases 32 32 32 … 32 0 
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4) Convolution Layer 
Let 𝐼 be the input of the convolution layer, 𝐾 the 

kernel, and 𝐵 the bias. The output of the convolution 
layer 𝑙 + 1 can be calculated using (1) and (2) [11], 

 𝐼𝑟,𝑠(𝑙+1) = 𝜑(𝑌𝑟,𝑠(𝑙) ). (2) 

where H1 and H2 are the sizes of the kernel K, D is the 
number of kernels K, r=0, 1,..., m and s=0, 1,..., n, and 𝜑 
is the sigmoid function, defined as:  𝜑(𝑥) =  ଵଵା௘షೣ. 

5) Pooling Layer 
A pooling layer (a subsampling layer) aims to reduce 

the feature resolution to make the features more resistant 
to noise and distortion. There are two primary methods 
of pooling: maximum pooling and average pooling. Both 
methods start by dividing the pixel matrix into several 
two-dimensional matrices (see Figure 5). Maximum 
pooling selects the highest value from each region, 
whereas average pooling computes the average value 
from each region [11]. 

6) Training Phase 
Training is a very crucial stage in deep learning. The 

purpose of training is to determine the best model to solve 
the problem. Training calculations are carried out by 
minimizing the loss function. In this study, to minimize 

𝑌𝑟,𝑠( 𝑙 ) = 𝐵( 𝑙 ) + ෍ ෍ ෍ 𝐾𝑢,𝑣 (𝑙) ∗𝐷
𝑑=0

𝐻2
𝑣=−𝐻2

𝐻1
𝑢=−𝐻1 𝐼𝑟+𝑢,𝑠+𝑣( 𝑙 )  (1)

Figure 3. The architecture of CNN in the first part of the proposed 
method. OP-1 is output from the feature extraction layer. 

 
Figure 4. The architecture of CNN in the second part of the proposed 

method. 

Figure 5. Illustration of max pooling. 
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the error in the training phase, we use the loss function L2 
as given by (3), 

𝜉  = (෍‖ℎ(𝑥) − 𝑡(𝑥)‖)ଶ௡
௜ୀଵ  (3)

where ξ is the loss function, h(x) is the image output from 
the network, and t(x) is ground truth images. 

Hereafter, to optimize the training phase, we 
employed the Adam Optimizer with 𝛽ଵ = 0.9, 𝛽ଶ =0.999, and ∈= 1e − 8. The optimizer and RMSprop 
momentum were both set to a value of 0.9. The learning 
rate started at 0.002 and increased to 0.005. The training 
process would terminate upon reaching the final learning 
rate. If the loss remained constant for 10 consecutive 
epochs, we reduced the learning rate by a factor of 2 until 
the final learning rate was achieved. We implemented a 
technique to create high resolution based on instructional 
techniques, as referenced in [26], [27]. This method aims 
to improve prediction accuracy [28]. Additionally, we 
applied the strategy proposed by Wang et al. in [29] to 
the self-ensemble. During this training phase, a cross-
validation ensemble of five was utilized. 

In addition, the calculation steps for each layer's 
feed-forward phase are derived from [30], and those for 
the feed-backward phase are derived from [31]. The 
weight update rule follows the classic backpropagation 
method [32] and employs the Adam Optimizer [33]. To 
mathematically update the weights w and bias b at time t, 
we use (4) and (5), respectively [11], w(t + 1) = w(t) − α mෝ ୲౭ඥv୲౭+∈ , for ∈> 0 (4)

b(t + 1) = b(t) − α mෝ ୲ౘඥv୲ౘ+∈ , for ∈> 0 (5)𝑚௧ೢ = 𝛽ଵ𝑚௧ೢିଵ + (1 − 𝛽ଵ) 𝑔௧ೢ 𝑚௧್ = 𝛽ଵ𝑚௧್ିଵ + (1 − 𝛽ଵ) 𝑔௧್ 𝑣௧ೢ = 𝛽ଶ𝑣௧ೢିଵ + (1 − 𝛽ଶ) 𝑔௧ଶೢ  𝑣௧್ = 𝛽ଶ𝑣௧್ିଵ + (1 − 𝛽ଶ)𝑔௕ଶ 𝑚ෝ௧ೢ = ௠೟ೢ൫ଵିఉభ ೟ ൯; 𝑚ෝ௧್ = ௠೟್൫ଵିఉభ ೟ ൯ 𝑣ො௧ೢ = ௩೟ೢ൫ଵିఉమ ೟ ൯; 𝑣ො௧್ = ௩೟್൫ଵିఉమ ೟ ൯ 
where 𝑚௧ೢis the first moment of weight w, 𝑣௧ೢ is the 
second raw moment of weight w,  𝑚௧್ is the 1st moment 
of bias b, 𝑣௧್is 2nd raw-moment of bias b, 𝑚ෝ௧ೢis the 
weight-corrected 1st moment, 𝑣ො௧ೢ is the weight-corrected 
2nd raw moment, 𝑚ෝ௧್ is the bias-corrected 1st moment, 𝑣ො௧್ is the bias-corrected 2nd raw-moment, 𝛼 is learning 

rate, 𝛽ଵ 𝑎𝑛𝑑 𝛽ଶ are hyperparameters,  𝑔௧ೢ= డడ௪ is the 
partial derivative of the loss function with respect to w, 

and  𝑔௧್ =  డడ௕  is the partial derivative of the loss function 
with respect to b.   

7) Measurement and Validation 
To measure the effectiveness of the proposed 

method, we employ standard metrics commonly used to 

assess the quality of transformed images, specifically the 
PSNR and SSIM [34]. PSNR compares the maximum 
signal level of the original image with the noise that 
appears after the transformation process (output image). 
Meanwhile, SSIM evaluates the structural and visual 
information between the output and original images. 
Mathematically, PSNR is calculated using (6), while 
SSIM is determined by (8). 

 𝑃𝑆𝑁𝑅 = 20 𝐿𝑜𝑔ଵ଴ ቀெ௔௫೑√ெௌாቁ (6) 

 𝑀𝑆𝐸 = ଵ௠௡ ∑ ∑ ‖𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)‖ଶ௡ିଵ଴௠ିଵ଴  (7) 

Here, 𝑓 denotes the pixel matrix of the original image, 
while 𝑔 represents the pixel matrix of the resulting image. 
The variable 𝑚 indicates the number of rows of pixels in 
the images, with 𝑖 as the index of a specific row. 
Additionally, 𝑛 signifies the number of columns of pixels 
in the image, and 𝑗 represents the index of a specific 
column. Furthermore,  𝑀𝑎𝑥௙ represents the maximum 
signal value present in the original image. 

 𝑆𝑆𝐼𝑀(௫,௬) = ൫ଶఓೣఓ೤ା஼భ൯൫ଶఛೣ೤ା஼మ൯൫ఓమೣାఓ೤మା஼భ൯൫ఛమೣାఛ೤మ ା஼మ൯ (8) 

Where 𝜇௫ and 𝜇௬ are the average brightness of  images x 
and y, 𝜏௫ଶ and 𝜏௬ଶ are the variants of image x and image y 
that is contrast, 𝜏௫௬ covariance of image x and image y 
that is structure measure, and 𝐶ଵ and 𝐶ଶ are small 
constants to stabilization numerical. 

III. RESULTS AND DISCUSSION  

A. Training Model 
For the training phase, we utilized databases 

commonly used to train CNN models for generating 
high-resolution images, i.e. the database from Yang et al. 
[18] and the Berkeley Segmentation Database [19]. The 
Yang database consists of 96 nature images, while the 
Berkeley database (BSD200) contains 200 images. An 
illustration of some images from the BSD200 database  
[19] is shown in Figure 6. Furthermore, we initialized the 
weights using random numbers generated by a Gaussian 
distribution with a mean of zero and a standard deviation 
of 0.001, while setting the biases to zero for every part. 

In addition, the configuration of our training is 
divided into multiple scaling factors: 2, 4, 8, and 16. Each 
scale factor defines the desired improvement in image 
resolution. For instance, if the input image resolution is 

 

Figure 6. Sample images from Berkeley Segmentation [19]. 
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to be increased by a factor of 2, the training scale factor 
is 2; if the resolution is to be increased by a factor of 4, 
the training scale factor is 4; and so on. 

B. Testing Model 
To verify the proposed method, we used a dataset 

originating from Landsat 8 imagery, which was 
downloaded from the Google Earth Engine platform 
(https://developers.google.com/earth-
engine/datasets/catalog/landsat-8). 

As we know, remote sensing images are taken from 
distant locations and cover large areas. For example, the 
Landsat 8 satellite has an imaging area of 185 km2. 
Despite its wide coverage, the objects in the image are 
tiny. Enlarging the entire image directly is not the best 
solution, as it requires large resources and high 
computational complexity. 

To overcome this problem, this research applies a 
partition technique based on area. In this case, we 
experimented with three different partition sizes: 16×16 
pixels, 24×24 pixels, and 32×32 pixels. Next, each 
partition is increased to 128×128 pixels. An illustration 
of the image partitioning process is presented in Figure 
7. 

In this experiment, we compare the result from our 
proposed method with previous methods widely used to 
improve the quality of low-resolution images, 
i.e.  Bicubic, SRCNN  [35], SRCNN-IBP [36], DRL [37], 
DCSCN [38]. These five methods are considered very 
good and are commonly used in the wider world. The 
results of the comparison obtained can be seen visually 
in Figure 8, while mathematically, the comparison of 
PSNR and SSIM from each method is presented in Table 
3.  

As illustrated in Figure 8, the images generated by 
our method exhibit superior visual quality compared to 
those produced by previously established methods. This 
observation is further substantiated by the quantitative 
results, specifically the SSIM and PSNR values presented 
in Table 3. The SSIM and PSNR values for all partition 
sizes (i.e. 16×16 pixels, 24×24 pixels, and 32×32 pixels) 
indicate that the quality of the images produced by the 
proposed method is consistently higher compared to 

 

 
Figure 7. The segmentation of image for input CNN process. 

TABLE 3 
THE PSNR AND SSIM COMPARISON OF THE OUTPUT OF SOME STATE 

OF THE ART 

Methods 
PSNR/SSIM 

16×16 
pixels 

24×24 
pixels 

32×32 
pixels 

Bicubic 26.45/0.520 27.16/0.721 29.75/0.831
SRCNN [35] 26.74/0.632 27.66/0.722 30.84/0.856
SRCNN-IBP [36] 27.78/0.641 28.87/0.746 30.90/0.859
DRL[37] 28.77/0.779 29.83/0.841 30.38/0.896
DCSCN [38] 28.66/0.790 29.88/0.861 32.93/0.910
Our Method 28.94/0.822 30.24/0.089 33.24/0.925 

  

 

Figure 8. The comparison of some output from our proposed method 
with the existing methods for segment size areas 16×16 pixels, 24×24 

pixels, and 32×32 pixels. 
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existing methods. Accordingly, it can be concluded that 
the proposed method outperforms existing approaches.  

IV. CONCLUSION 
This research has successfully developed an 

architecture for convolutional neural networks (CNNs) to 
enhance the quality of remote-sensing images. The 
architecture, classified as a deep-CNN model, 
incorporates over 75 convolutional layers. Moreover, the 
proposed method outperforms existing methods based on 
peak signal-to-noise ratio (PSNR) and structural 
similarity index measure (SSIM). 
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