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Abstract 

Accurate identification of plant species is crucial for biodiversity conservation in modern agriculture and horticulture. 
However, manual identification methods often struggle with the complexity and overlapping visual characteristics of different plant 
species, making the process challenging. To address this issue, this research proposes using the YOLOv5 deep learning algorithm 
for automated plant species detection. The goal is to develop a model that is both effective and highly accurate in identifying plant 
species under various environmental conditions. The study utilized a dataset of 1,220 images representing nine plant species, such 
as Alocasia Macrorrhizos, Cactus, Costus Spicatus, Euphorbia tirucalli, and Sansevieria. The training process, which ran for 200 
epochs and took approximately 53 minutes, resulted in a model with mean Average Precision (mAP) of 85.73%, precision of 
98.27%, and recall of 94.36%. The model demonstrated strong performance, accurately identifying plant species in both single and 
multiple object scenarios. The findings confirm that the proposed YOLOv5-based model is highly effective for plant species 
identification, offering both accuracy and efficiency. The success of the model in detecting plant species makes it a valuable tool 
for biodiversity conservation efforts and further development of AI-driven plant recognition technologies. 
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I.   INTRODUCTION 
In contemporary agriculture and horticulture, 

biodiversity conservation plays a pivotal role in 
maintaining healthy ecosystems, and this effort hinges 
significantly on effective plant species identification. 
However, the complexity of plant identification lies in 
the diverse and often overlapping visual characteristics 
of species, which frequently results in errors when 
relying on manual methods [1], [2]. As a result, there is a 
growing need for highly efficient and accurate automated 
models that can assist in the reliable identification of 
plant species. In this context, Artificial Intelligence (AI) 
has shown great potential, particularly through the use of 
object detection techniques, to address these challenges 
in plant species identification [3], [4], [5], [6]. 

Among AI-driven approaches, the YOLO (You Only 
Look Once) algorithm has emerged as a leading solution 
for real-time object detection, known for its balance 
between speed and accuracy in processing large image 
datasets [7], [8], [9]. This research investigates the use of 
the YOLOv5 algorithm for plant species identification 
[10], [11], leveraging its advancements to improve 
efficiency and accuracy. A review of related works 
shows that AI, particularly deep learning and object 
detection techniques, have been successfully applied in 
similar tasks, establishing a strong foundation for further 
exploration. 

One notable example is the work by Wu et al. [12], 
who employed an improved YOLOv4 algorithm for 
detecting apple flowers in orchards. Their approach 
achieved a remarkable mean Average Precision (mAP) of 
97.31% and a detection speed of 72.33 frames per second 
(fps), surpassing five other algorithms in both speed and 
accuracy. The model also demonstrated robustness to 
variations in apple tree species and lighting conditions, 
illustrating the effectiveness of deep learning models in 
real-world agricultural environments. This research 
highlights the potential of YOLO-based models in 
agricultural applications where accuracy and real-time 
performance are critical. 

Similarly, Mardiyah [13] applied Convolutional 
Neural Networks (CNN) to classify images of gardens 
and rice fields, achieving a training accuracy of 96.25% 
and a validation accuracy of 75%. The CNN model, 
trained on a dataset of 100 images, used an 80:20 data 
split, further confirming the potential of AI in agriculture. 
Mardiyah’s work demonstrates the versatility of AI 
models in diverse agricultural settings and underscores 
the importance of dataset size and quality in achieving 
high accuracy. 

Sahla Muhammed Ali’s comparative analysis of 
YOLOv3, YOLOv4, and YOLOv5 for sign language 
detection further supports the superiority of the YOLOv5 
model [14]. Her research found that YOLOv5 achieved 
an F1-score of 0.655 and an mAP of 0.633, 
outperforming its predecessors. The study’s findings 
reinforce the effectiveness of YOLOv5 in various object 
detection tasks, including those beyond agricultural 
applications. The comparative analysis of different 
YOLO versions indicates that YOLOv5’s improvements 
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in accuracy and speed make it an ideal candidate for tasks 
requiring real-time detection with high precision. 

The study by Srivastava et al. [15], which compared 
several deep learning algorithms, including YOLO, SSD, 
and Faster R-CNN, further confirms the efficacy of 
YOLO models in object detection tasks. Srivastava et al. 
concluded that YOLOv3 outperformed SSD and Faster 
R-CNN in terms of speed and computational efficiency, 
establishing YOLO as a benchmark for future object 
detection applications. Moreover, Alfonso et al. [16] 
applied object detection models for tomato flower 
detection in greenhouse environments, achieving precise 
results with an average positional error of less than 0.3 
across multiple targets. This research underscores the 
versatility and accuracy of object detection techniques 
like YOLO in agricultural scenarios. 

In terms of real-time applications, the work by 
Paszke et al. [17] introduced the ENet architecture, a 
highly efficient neural network designed for low-latency 
tasks like semantic segmentation. ENet is 18× faster, 
requires 75× fewer FLOPs, and has 79× fewer parameters 
than comparable models while maintaining similar or 
better accuracy. The efficiency gains provided by ENet 
are particularly relevant for real-time plant species 
identification tasks, where both speed and accuracy are 
critical. 

K. Wang’s work on PANet (Path Aggregation 
Network) [1] introduced a novel few-shot image 
segmentation method based on prototype alignment, 
offering a potential avenue for improving plant 
identification models in cases where training data is 
limited. PANet’s ability to handle few-shot learning 
scenarios could complement the real-time capabilities of 
YOLOv5, making it a valuable technique for scenarios 
where only a small number of plant species need to be 
identified. Additionally, Y. Tian et al. [2] demonstrated 
the effectiveness of using an improved YOLOv3 model 
for detecting apples at different growth stages in 
orchards. Their work showed that YOLO-based models 
could handle variations in growth stages and 
environmental conditions, making them well-suited for 
agricultural applications. 

Building on these insights, the current research 
proposes a YOLOv5-based model for plant species 
identification. This model seeks to leverage the 
advancements in YOLOv5 to achieve high accuracy and 
real-time performance, while also addressing the unique 
challenges posed by plant species’ diverse visual 
characteristics. The model will be tested on a curated 
dataset of plant species, focusing on key parameters such 
as mAP, detection speed, and robustness across varying 
environmental conditions. By refining the object 
detection capabilities of YOLOv5 and incorporating 
insights from previous studies, we aim to contribute to 
the development of faster, more accurate systems for 
plant species identification. 

The significance of this research lies in its potential 
to enhance biodiversity conservation efforts by providing 
an efficient tool for plant species identification. By 
integrating state-of-the-art object detection algorithms 
like YOLOv5 with real-time application needs, this study 
aims to advance the technology available for plant 
recognition in agricultural and horticultural settings. 

Titled "Object Detection Approach Using YOLOv5 for 
Plant Species Identification," the research focuses on 
optimizing the YOLOv5 algorithm for practical use 
cases. The dataset employed will be limited to select 
plant species, as outlined in Table 1, with the aim of 
achieving meaningful improvements in detection speed 
and accuracy. 

II. METHODS 
In this research, the detection of plant species was 

performed using a deep learning-based object detection 
algorithm to overcome the challenges posed by 
environmental variations such as background clutter and 
changes in illumination commonly encountered in open 
orchard settings [1], [18]. These factors often degrade the 
performance of traditional object detection methods, 
necessitating the adoption of more robust solutions. By 
leveraging deep learning, the study aims to improve the 
accuracy and resilience of the plant species detection 
process. 

The YOLO framework was chosen for this task due 
to its reputation as a highly efficient one-stage object 
detection algorithm. Unlike traditional multi-stage 
detection systems, YOLO utilizes a single CNN [19], 
[20], [21] to process images and directly predict both the 
class labels and bounding box coordinates for detected 
objects. This end-to-end approach enables simultaneous 
object localization and classification, significantly 
enhancing detection speed without compromising 
accuracy [22]. 

In particular, YOLOv5 was selected for its modular 
scalability, offering five distinct model versions—
YOLOv5n (nano), YOLOv5s (small), YOLOv5m 
(medium), YOLOv5l (large), and YOLOv5x (extra-
large). These versions vary in terms of their 
convolutional width and depth, enabling the selection of 
models tailored to specific hardware capabilities and 
application requirements. For instance, YOLOv5n and 
YOLOv5s are optimized for low-resource environments, 
making them ideal for deployment on edge devices or 
embedded systems. Conversely, YOLOv5x, with its 
greater computational capacity, provides enhanced 
detection performance at the expense of processing 
speed, making it suitable for high-performance 
applications requiring superior accuracy. 

In this study, the YOLOv5 algorithm was applied to 
build a robust plant species detection model. The model 
development process involved several stages, including 
data preprocessing, model training, and evaluation, as 
depicted in Figure 1. Through these steps, the study seeks 
to ensure that the model can maintain high detection 
accuracy and speed even in varying environmental 
conditions, thus contributing to advancements in 
automated plant species identification. 

The research process begins by clearly defining the 
problem that needs to be addressed. Following this, a 
comprehensive review of relevant literature is conducted 
to identify appropriate methods and approaches for 
solving the identified issue. Once the most suitable 
approach is chosen, data collection takes place, focusing 
on gathering a diverse set of images from the 
surroundings, such as the home yard environment. 
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The collected dataset undergoes a preprocessing 
phase aimed at enhancing image quality and variability. 
During this stage, the images are resized, and static 
cropping techniques are applied. Afterward, the dataset 
is labeled and annotated to facilitate the training of the 
model, allowing it to predict and identify objects in the 
images accurately. The annotated dataset is then split into 
three subsets: training, validation, and testing datasets. 
The training and validation sets are utilized to build and 
refine the model, ensuring it achieves strong detection 
accuracy, while the testing set is reserved for evaluating 
the model's performance in real-world conditions. 

The training process involves using the YOLOv5s 
model, a lightweight version of the YOLO family, known 
for its balance between speed and accuracy. During this 
stage, the model’s architecture is enhanced with several 
feature extraction components, including CSPDarknet 
for backbone feature extraction and PANet for feature 
fusion. The model is then tasked with object 
classification and bounding box prediction for each 
identified object. Once trained, the YOLOv5s model is 
evaluated against the testing dataset to measure its 
detection accuracy across various scenarios. 

After testing, the model is assessed to determine 
whether it meets the predefined accuracy benchmarks. If 
the results fall short, adjustments are made, often 
beginning with a return to the preprocessing stage to 
further improve the dataset quality. The final detection 
outcomes are documented, serving as a basis for potential 
future research and model improvements. 

A. Identification Problem 
The first step in addressing any challenge is 

identifying the problems that arise, as this helps in 
formulating an effective plan to solve them. In this 
research, the focus is on improving the identification of 
plant species. Several factors, such as environmental 
conditions and visual similarities between species, can 
cause the model to perform inaccurately. Therefore, the 
aim of this study is to develop a model that is both highly 
accurate and efficient in detecting plant types. The 
expectation is that this research will not only resolve 
current detection issues but also contribute valuable 
insights for further development and future studies. 

B. State-of-the-Art 
A thorough literature search is an essential part of the 

research process, helping to gather insights and 
information relevant to the studied topic. By reviewing 

existing literature, it becomes possible to identify various 
approaches and select the most suitable algorithm for 
addressing the problem at hand. This decision is 
informed by prior studies, which provide a foundation for 
understanding the strengths and weaknesses of different 
methodologies. Supporting references for this research 
are drawn from a wide range of sources, including 
journals, conference papers, books, websites, and other 
platforms, both from domestic and international contexts. 
This comprehensive approach ensures that the chosen 
solution is backed by well-established and diverse 
perspectives in the field. 

C. Data Collecting 
Image data collection for this research was 

conducted in the environment surrounding a residential 
area, focusing on capturing several types of plants. The 
details of the collected dataset are presented in Table 1. 
The images were taken using a Redmi Note 10s 
smartphone camera, with a resolution of 3472 × 3472 
pixels. All photographs were captured during daylight 
hours to ensure consistent lighting conditions. The 
images were taken from specific angles to maximize 
clarity, and only the clearest images were selected for 
use. In total, 1,220 images were gathered for this dataset. 
Figure 2 presents sample images from the plant dataset 
used in this study. 

D. Preprocessing Data 
Once the collected and sorted data is ready, it first 

undergoes preprocessing. The preprocessing begins by 
resizing the images from their original dimensions of 
3472 × 4624 pixels to a standardized 640 × 640 pixels. 

Figure 1. Flowchart workflow. 

Figure 2. Plant dataset collection. 

TABLE 1 
PLANT DATASET INFORMATION 

Resolution  (640 px) × (640 px) 
Plant Dataset Alocasia Macrorrhizos 122 images
(1,220 images) Cactus 122 images

Costus Spicatus 119 images
Euphorbia tirucalli 122 images
Excoecaria Cochinchinensi 119 images
Frangipani 119 images
Kalanchoe 126 images
Sansevieria 231 images
Syzygium paniculatum 140 images



Object Detection Approach Using YOLOv5 For Plant Species Identification •  123 
 

  

 
JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 24, No. 2, December 2024 

After resizing, the next step involves trimming 
unnecessary parts of the images using a static crop 
feature. This cropping process helps enhance the 
accuracy of the images by focusing on relevant areas. 
Once the dataset is adequately refined, it moves to the 
labeling phase, commonly known as image annotation. 

During the annotation process, each object in the 
image is given a "ground truth" bounding box, which 
accurately defines the position of the object according to 
its category or class. In this stage, labels are assigned 
based on the type of object present in each image. The 
annotation process was conducted using the Roboflow 
application, ensuring the dataset was properly prepared 
for the next steps in model training and evaluation. 

E. Data Split 
Once the data has been collected, it is divided into 

three categories: training, validation, and testing datasets. 
The majority of the data, 85%, is assigned to the training 
set to allow the model to learn effectively from a broad 
range of examples. Meanwhile, 10% of the data is 
reserved for validation, enabling adjustments and fine-
tuning of the model during training. The remaining 5% is 
set aside for testing, ensuring that the final model's 
performance is evaluated on unseen data, providing an 
accurate measure of its ability to generalize. This 
distribution strategy is designed to optimize both model 
learning and performance assessment. 

F. Training Model 
The YOLOv5 architecture was employed to perform 

the model training, with the final weights generated from 
the process considered optimal for image detection 
during the testing phase. Table 2 provides detailed 
information about the YOLOv5 model training process, 
including the number of training images, batch size, 
training time estimation, and the number of epochs used. 
During the training, several performance metrics, 
including precision, recall, mAP, box loss, object loss 
(obj loss), and classification loss (cls loss), were recorded 

and displayed [23], [24]. The mAP graph specifically 
illustrates the accuracy of the predicted bounding box in 
estimating the true position of objects in the images. 
Additionally, three loss graphs were generated to track 
the model's performance in terms of bounding box 
placement, class prediction, and object presence 
detection. Google Collaboratory [25], was utilized as the 
platform for conducting the model training, providing the 
necessary computational resources. 

Figure 3 illustrates the flow of a machine learning 
model architecture designed for object detection, 
specifically for identifying plant species. It begins with 
an input image, originally sized at 3472 × 4624 pixels, 
depicting different types of plants. These images are then 
processed through the core components of the model, 
which include the backbone, neck, and head. In typical 
object detection architectures, the backbone is 
responsible for extracting important features from the 
input image, usually employing CNN. The neck further 
refines these features, often through techniques like 
Feature Pyramid Networks (FPN), allowing the model to 
handle multi-scale object detection. The head of the 
model generates the final outputs, which consist of 
bounding boxes, classifications, and confidence scores 
for the objects detected in the image. 

After passing through the model, the output images 
are resized to 640 × 640 pixels. The identified plant 
species are labeled and enclosed in colored bounding 
boxes to clearly indicate their location and classification. 
For example, the species Sansevieria is labeled with a 
green bounding box, Alocasia Macrorrhizos with a red 
bounding box, and Euphorbia tirucalli with an orange 
bounding box. This diagram represents the complete 
process of plant identification, from raw image input to 
the final detected and labeled output, showcasing the 
efficiency of the model in accurately detecting and 
classifying different plant species [26], [27], [28].  

Figures 4 and 5 depict the proposed YOLOv5 
architecture, which is composed of three main 
components: the backbone, neck, and head, each playing 
a crucial role in object detection. 

The backbone of the YOLOv5 architecture is 
CSPDarknet53. This component functions as a CNN that 
extracts essential features from images. CSPDarknet53 
enhances the efficiency and accuracy of the model by 

TABLE 2 
DETAIL MODEL TRAINING 

Model 
(pt) 

Image 
Training Batchsize Estimation 

Training(s) Epoch 

YOLOv5 1,220 32 53.52 200

 

 
Figure 3. Block diagram YOLOv5. 
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repeatedly separating and combining gradient 
information. By merging gradient changes into feature 
maps, it helps reduce the number of parameters, which in 
turn decreases the model size while maintaining high 
performance [29]. This design allows the model to 
process images with greater speed and precision. 

The neck of the architecture is responsible for 
processing and combining the extracted features before 
passing them to the prediction layer. Since more complex 
networks increase the risk of information loss, YOLOv5 
incorporates a Feature Pyramid Network (FPN) [30], 
which enhances the model's ability to detect small 
objects. A key component of this neck is PANet [31], 
which improves the flow of local information to higher 
layers, helping the model retain critical details for smaller 
object detection [32]. 

The head is where the actual object detection occurs. 
This component predicts the bounding box and class of 
each detected object [33]. YOLOv5 employs the same 
head structure as its predecessors, YOLOv3 and 
YOLOv4 [34], allowing it to generate three distinct 
output feature maps for multi-scale prediction. This 
approach improves the model's ability to detect objects of 
varying sizes, from small to large, with better efficiency 
and accuracy [32]. 

The YOLOv5 architecture starts by inputting an 
image into CSPDarknet53 for feature extraction. The 

extracted features are then processed through PANet, 
combining them before sending the processed data to the 
head for object detection [29]. YOLOv5 performs object 
detection across three different scales to account for the 
size variation of objects within the image. A 640 × 640-
pixel image generates grids of different sizes: 80 × 80 for 
small objects, 40×40 for medium objects, and 20 × 20 for 
large objects. Each grid generates three anchor boxes of 
different sizes, resulting in a total of 25,200 bounding 
boxes ((80 × 80) + (40 × 40) + (20 × 20)) × 3 = 25,200. 

To refine the detection results, Non-Max 
Suppression (NMS) [35], [36] is applied. This step 
selects the bounding box with the highest confidence 
when multiple boxes are generated for a single object 
[37], ensuring that only the most accurate prediction is 
retained. 

G. Model Testing and Evaluation 
In this study, the trained model is tested using new 

data that has not been used or included in the model 
training process. This step is crucial for evaluating the 
model’s generalization ability and its effectiveness in 
accurately detecting plant species. The objective is for 
the model to achieve high accuracy with minimal loss, 
ensuring reliable detection performance. 

To assess the model's performance, key evaluation 
metrics such as precision, recall, and mAP are used. 
These metrics are calculated based on objects detected 
with a confidence score of 0.5 or higher. To further verify 
the model's effectiveness, four main performance 
indicators are adopted: precision, recall, mAP, and 
detection speed.  

A critical aspect of the evaluation is the use of the 
Intersection over Union (IOU) metric. IOU measures the 
overlap between the predicted bounding box and the 
ground truth bounding box. In this study, a prediction is 
considered correct when the IOU is greater than or equal 
to 0.5 (IOU ≧ 0.5). If the IOU is less than 0.5 (IOU < 
0.5), it is treated as a false positive, whereas an IOU of 0 
indicates a false negative. The precision, recall, and mAP 
are then calculated based on these cases, using the (1) – 
(4). In this context, mAP refers to the average value of 
the Average Precision (AP) when detecting plants, with 
higher mAP values indicating better detection accuracy 

Figure 4. Proposed YOLOv5 architecture. 

Figure 5. Detail of YOLOv5 architecture. 
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[12]. This approach ensures that the model’s ability to 
detect plant species is rigorously tested and accurately 
measured, with the performance evaluation given as (1) - 
(4), 

 IOU (R, R’) = |ୖ ∩ ୖᇲ||ୖ ∩ ୖᇲ| (1) 

 Precision = ்்ାி x 100% (2) 

 Recall = ்்ାிே x 100% (3) 

 mAP = 
∑  స  భಲುሺሻ  x 100% (4) 

where R is the detected area of the object's bounding box. 
R' is the actual area of the object's bounding box. TP, FP, 
and FN are the number of true positive cases, false 
positive cases, and false negative cases, respectively. C 
is the number of plant detection categories [12]. 

III. RESULT AND DISCUSSION 
 To demonstrate the effectiveness of the proposed 

technique, a sample of 10 plant images was used, and the 
results are presented in Table 3. The approach achieved 
precision and recall values of 98.27% and 94.36%, 
respectively, with an mAP of 85.73%. These results 
highlight the high precision and reliability of the model, 
showing its strong potential for accurate plant species 
identification. The impressive performance of the 
proposed method suggests that it can serve as a valuable 
technical reference for the development and 

enhancement of plant identification models in future 
research, particularly in applications requiring high 
accuracy and efficiency. 

During the system testing phase, the object detection 
performance is evaluated to assess the accuracy and 
effectiveness of the trained model in identifying plants. 
When a plant is detected, a bounding box is drawn around 
the object, accompanied by the probability score 
indicating the likelihood that the object is a plant. These 
detection results provide a visual representation of the 
model's ability to correctly identify plant species, as 
shown in Figure 6. This stage helps ensure that the 
trained weights are performing optimally and that the 
system can reliably detect plants with a high degree of 
confidence. 

For this testing, the best-performing weights from 
the training phase were utilized. These weights were 
applied to the test dataset, and the predictions generated 
by the model were compared against the manually 
labeled data to evaluate accuracy and performance. 
Additionally, ten graphs depicting various performance 
metrics, such as precision, recall, and loss trends, that 
were generated during the training process are displayed 
in Figure 7. These graphs provide a visual representation 
of the model's training progression and offer insights into 
how the model has learned to make accurate predictions 
over time. 

Figure 7 presents the evaluation metrics derived 
from the training results, which were used to assess the 
model's overall performance. The evaluation matrix 
reveals a consistent downward trend in the loss function 
values throughout the training process. The x-axis 
represents the number of epochs, while the y-axis 
indicates the threshold values for the different evaluation 
metrics. As training progresses, the loss function values 
for both the training and validation datasets steadily 

TABLE 3 
MODEL TESTING RESULT 

Model 
 

Precision 
(%) 

Recall 
(%) 

mAP 
(%) 

Size Model 
(MB) 

YOLOv5 98.27 94.36 85.73 14

 

 
Figure 6. Model detection results for (a) costus spicatus, (b) sansiviera, (c) alocasia macrorrhizos, (d) excoecaria cochinchinensis, (e) syzygium 

paniculatum, and (f) sansiviera. 
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decrease, indicating improved learning. Concurrently, 
key performance indicators such as accuracy, recall rate, 
and average precision show a gradual increase up to 
around the 10th epoch. After the 10th epoch, the 
validation data loss for classification (valid/cls_loss) 
decreases at an accelerated rate, resulting in a noticeable 
drop in accuracy. Between the 27th training batch and the 
180th epoch, the validation data's object loss 
(valid/obj_loss) exhibited instability, leading to 
fluctuations in model performance. Despite these 
challenges in validation, the training data metrics 
(train/obj_loss, train/box_loss, and train/cls_loss) 
continued to show a consistent decline, contributing to 
overall performance improvements as the training 
progressed to 200 epochs. This indicates that while the 
model showed some instability during validation, the 
training data maintained a steady trajectory toward better 
accuracy and loss reduction. 

The validation data metrics, specifically 
valid/box_loss and valid/cls_loss, exhibited minimal 
downward movement and reached a stable state at around 
105 epochs. In terms of the precision matrix, the curve 
demonstrated significant instability from the 9th training 
batch to the 94th epoch, which impacted the model's 
performance during this period. However, starting from 
the 95th training batch up until the 200th epoch, the 
precision curve showed only slight fluctuations, leading 
to improved model performance. 

Similarly, the recall matrix also experienced 
performance instability from the 2nd training batch 
through the 133rd epoch. From the 134th batch onward 
until the 200th epoch, the recall curve remained stable 
with minimal decline, contributing to better recall 
performance. For the mAP 0.5 metric, instability was 
observed between the 1st and 76th epochs. However, 
after the 77th training batch, the mAP 0.5 curve showed 
consistent stability, with no further decline up to the 
200th epoch. 

Regarding the mAP 0.5:0.9 matrix, the model 
experienced minor instability throughout the training 
process from the 1st to the 200th epoch. Despite this, the 
overall accuracy remained strong, indicating that the 
model achieved good accuracy for further development 

and refinement, even when exposed to more stringent 
evaluation criteria using the mAP 0.5:0.9 metric. Based 
on the confusion matrix derived from the test results 
shown in Figure 8, it can be concluded that the model 
correctly identified all plant species, with a prediction 
accuracy of 1.0 for each species, indicating no errors in 
the predictions. This demonstrates the high precision of 
the proposed model. 

The performance of the YOLOv5 model for both the 
training and testing phases was evaluated using a private 
dataset and compared with other plant identification 
models in terms of accuracy. The dataset comprises 1,220 
images, covering nine plant species, including Alocasia 
Macrorrhizos, Cactus, Costus Spicatus, Euphorbia 
tirucalli, Excoecaria Cochinchinensi, Frangipani, 
Kalanchoe, Sansevieria, and Syzygium paniculatum. Out 
of the total dataset, 1,220 images were used for training, 
and 500 images were allocated for testing. All images 
were selected from these nine species, and the resolution 
for each image was standardized to 640 × 640 pixels. 

The YOLOv5-based plant species identification 
model was evaluated by training and testing the model on 
multiple splits of the dataset to obtain a reliable estimate 
of its performance. The model achieved an average 
training accuracy of 96.45%, indicating that it effectively 
learned from the training data. The average testing 
accuracy was also 96.45%, showing that the model 
maintained its accuracy on unseen data. This result 
demonstrates that the YOLOv5 model outperformed 
other machine learning models for plant species 
identification, such as Faster R-CNN, which achieved 
74.96% accuracy [38], and InceptionV3, which achieved 
82.50% accuracy [39]. This indicates that the proposed 
YOLOv5-based model provides a robust and accurate 
solution for plant species identification, outperforming 
established benchmarks in the field. 

IV.  CONCLUSION 
This study developed and evaluated a plant species 

identification model based on the YOLOv5 architecture, 
addressing the limitations of manual identification 
methods. The model demonstrated high efficiency and 
accuracy, achieving a precision of 98.27%, recall of 

Figure 7. Training results graph. 
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94.36%, and mAP of 85.73%. Both the training and 
testing phases yielded an accuracy of 96.45%, 
significantly outperforming established models like 
Faster R-CNN (74.96%) and InceptionV3 (82.50%). The 
model successfully identified nine plant species, with a 
prediction accuracy of 1.0 for each species, as validated 
by the confusion matrix. Its robust performance across 
varying environmental conditions makes it suitable for 
real-time applications in agriculture and biodiversity 
conservation. The YOLOv5-based approach presents a 
reliable and scalable solution for plant species 
identification, offering significant improvements in 
detection accuracy and speed. This research provides a 
strong foundation for future advancements in automated 
plant recognition systems. 
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