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Abstract 

Ground penetrating radar (GPR) is a non-destructive tool for exploring an underground object. Currently, GPR is also 
considered for reinforced concrete inspection. However, the image produced by GPR cannot be easily interpreted. Besides, the 
large observation of building concrete inspection motivates researchers to fasten and ease radar image interpretation. Thus, this 
research proposes a new method to translate the GPR scattering data image to its internal structure visualization. The proposed 
method employs a convolutional autoencoder model using amplitude and phase radar data as input of the algorithm. As an 
evaluation, in this stage, we perform numerical analysis by using finite-difference time-domain-based synthetic data that considers 
three cases: concrete with rebar, concrete with crack, and concrete with rebar and crack. All those cases are simulated with 
randomized dimensions and positions that are possible in real applications. Compared with the baseline method, our method shows 
superiority, especially in the semantic segmentation perspective. The parameter size of the proposed model is also much smaller, 
around one-third of the previous method. Therefore, the method is feasible enough to be implemented in real applications 
addressing an automatic internal structure reinforced concrete visualization. 
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I. INTRODUCTION 

Ground penetrating radar (GPR) is a sensing technology 
that utilizes electromagnetic waves to investigate 
information about subsurface objects. When 
electromagnetic waves travel to the ground, the buried 
object partially reflects them. These reflected waves are 
subsequently processed and analyzed to locate the object 
and ascertain its characteristics. GPR has been applied in 
various fields, including geophysics, geology, 
archeology, civil engineering, and humanitarian 
demining [1], [2]. Of particular interest to researchers 
currently is the latest application of GPR: non-destructive 
inspection of concrete structures, as referenced in [3], [4] 
and [5]. However, it is challenging to interpret the 
recorded data and images from the GPR. Some advanced 
and complex processing is required. Thus, simple and 
lightweight data processing is required to fasten and ease 

the non-destructive inspection of data acquisition and 
interpretation. 

The Full Waveform Inversion (FWI) is the standard 
method to identify the buried object from GPR signals. 
Some of the research that proposes that method is as 
follows. In 2012, Busch et al. proposed the quantitative 
conductivity and permittivity estimation using FWI [6]. 
In 2014, Forte et al. analyzed the velocity from common 
offset GPR data inversion applied in the synthetic and 
real data [7]. A spectral inversion method on GPR data 
was proposed by Huang et al. to determine the parameters 
of subsurface layers [8]. In 2019, Jazayeri made 
reinforced concrete mapping using FWI of GPR data [9]. 

Artificial intelligence algorithms, especially Deep 
Learning (DL), are currently popular. This algorithm can 
make a black box that mimics any input and output 
transformation. The use of DL algorithms on the 
ultrawideband radar image data to reconstruct the 
internal structure of material became the concern of many 
researchers. Many of them use deep learning to detect, 
classify, and recognize the buried object in the structure 
[10]-[14]. However, currently, researchers are using this 
technique as a new approach to the radar response 
inversion problem. The inversion of radar images using 
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deep learning algorithms, such as Enc-Dec, U-Net, and 
GAN, was conducted by Alvarez et al. [15]. The 
convolutional-to-trace network has been proposed to 
reconstruct the image and tunnel lining structure [16]. Ji 
et al. proposed a deep neural network for inverting the 
permittivity of GPR data [17]. The use of a convolutional 
neural network in the SegNet architecture to segment the 
defect of the buried object in the lining tunnel based on 
its permittivity values has been proposed by Yang et al. 
[18]. However, implementing those methods in the real 
GPR data still has drawbacks and limitations.  

In this proposal, we develop a new machine-learning 
structure to improve the performance of the previous 
method. Inspired by the valuable information carried by 
the radar signal phase [8]-[9] and the success of the 
previous research in the buried shape reconstruction 
using this feature [10], we use both amplitude and phase 
images of the GPR B-scan data in this study. In this 
paper, we propose a DL-based inversion method that 
concurrently employs the amplitude and phase of the 
reflection signal, aiming at an accurate and light 
computation model. By combining information carried 
by amplitude and phase with an appropriate technique, 
we hypothesize that the developed model can perform 
better inversion. Besides, from this study, we can also 
obtain different perspectives on the exploration of the 
phase information of radar data for image inversion. As 
an evaluation, we focus on applying reinforced concrete 
inspection employing synthetic data based on the finite-
difference time-domain method. We use the method from 
[18] as the performance and model complexity 
evaluation baseline. 

The remainder of this paper is organized as follows: 
Section II briefly explains the proposed method, followed 
by the numerical analysis setup in Section III. The result 
of the analysis is explained in section IV. Then, the 
conclusion of this study is described in section V. 

II. PROPOSED METHOD 

A. Ferroconcrete Inspection 
In the concrete inspection using GPR (see Figure 1), 

the GPR works by emitting an electromagnetic pulse 
through the emission antenna. The radar waves propagate 
in the concrete at a speed that depends on the electrical 
properties of the media. The receiving antenna receives 
electric fields generated by internal objects such as rebar 
or crack/void according to the time. The electrical 
properties that significantly affect the GPR recorded signal 
are permittivity (ε) and conductivity (σ). Electrical 
conductivity conveys the current density information 
generated by an external electric field, while permittivity 
is a complex-valued attribute indicating the medium's 
susceptibility to polarization by external electric fields. 
The complex permittivity (𝜀) is defined about ε and σ as 
(1), εୡ ൌ ε െ j 𝜎𝜔 ൌ εᇱ െ jε′′ (1) 

where the real part, 𝜀ᇱ ൌ 𝜀, corresponds to the dielectric 
constant, while the imaginary part, 𝜀ᇱᇱ ൌ ఙఠ, represents the 
loss factor, indicative of energy dissipation due to 

absorption. The dielectric constant or relative 
permittivity, 𝜀. This value is obtained by dividing it by 
the free space permittivity, 𝜀 ൌ 8.854 ൈ 10ିଵଶ F/m, 
expressed by (2). ε୰ ൌ εε (2) 

The alteration in this dielectric constant value is primarily 
induced by the water content, which causes its high 
dielectric constant and substantial loss factor. To 
generalize the condition of concrete, in this study, we 
simulate the dielectric constant in the range of 6 to 8. 

B. Deep Learning Method 
DL constitutes a sector within machine learning that 

constructs a nonlinear parametrized mapping by 
processing through multiple layers to extract high-level 
features. At the heart of this algorithm is the artificial 
neural network, which simulates human neurons [19]. If 𝑓 is defined as a function of DL, then the predicted value 
can be seen in (3), 𝒀𝑷 ൌ 𝑓ሺ𝑿, 𝜽ሻ (3)

where 𝒀𝑷 denotes the predicted value, 𝑿 signifies the 
vector of input data, and 𝜽 symbolizes the parameter set 
of the DL model, usually consisting of weight and bias 
values, among other factors. The neural network 
parameters undergo iterative adjustments during the 
learning phase to minimize the estimation error between 
the predicted and target values. 

C. Dual Input Convolutional Autoencoder 
The autoencoder algorithm is a variation of the feed-

forward neural network designed to compress input data 
into condensed representations and then reconstruct the 
original input data using the learned compact 
representations. This algorithm operates within the 
unsupervised learning paradigm, which aims to make the 
target values equal to the inputs. This algorithm consists 
of two symmetric but separate components: the encoder 
and the decoder. During the training process, parameters 
are learned to minimize discrepancies between the 
original data and the reconstructed outputs through 
backpropagation. 

Convolutional autoencoders (CAE) have a similar 
architectural pattern to classic autoencoders, 
incorporating encoding and decoding layers. However, 
unlike autoencoder, which relies on fully connected 

 

Figure 1. The process of ferroconcrete inspection. 
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layers, CAE employs convolutional and max-pooling 
layers for encoding and decoding. These layers are 
specifically designed to transform high-dimensional 
input vectors into lower-dimensional compact feature 
vectors, with the decoding layers structured using 
convolutional layers. The main components of this 
architecture include convolution layers, pooling layers, 
and fully connected layers. Through the application of 
the backpropagation algorithm, this process aims to learn 
spatial hierarchies of features automatically. 

In this study, we take the concrete inspection using 
GPR as a semantic segmentation or pixel categorization 
problem, which means the algorithm will classify each 
pixel to the targeted class representing an object 
(concrete, rebar, or crack). The autoencoder architecture 
comprises 4 encoding layers from 2 inputs and 4 
decoding layers (see Figure 2). We consider amplitude 
and phase radar images with a size of 160 × 160 pixels as 
input. The sample of both images can be seen in Figure 
3. The encoding convolutional layer filter numbers are 8, 
16, 24, and 32, respectively, with a filter size of 15 × 15. 
Each convolutional layer is followed by a batch 
normalization layer, Rectified Linear Unit (ReLU) 
activation unit, and max pooling layer with size 2 ൈ 2. 
After the fourth layer of the encoding step, the result from 
both input (amplitude and phase) are flattened to be 

processed by the fully dense network with a sigmoid 
activation function. 

The next step is a decoding process that also consists 
of four layers. The first layer consists of the upsampling 
layer with size 2 ൈ 2, a convolutional layer with the 
number 32 and a filter size of 15 ൈ 15, a batch 
normalization, and a ReLU activation function. This 
layer is followed by the other three layers with the same 
order structure, but their filter numbers of the 
convolutional layer are 24, 16, and 8, respectively, 
mirroring the encoder parts. 

The final layer consists of one convolutional layer 
with the filter size 1 ൈ 1, batch normalization, and a 
softmax activation function to generate the translated 
radar data, categorizing each image pixel into a targeted 
class (concrete, rebar, or crack). 

III. NUMERICAL ANALYSIS SETUP 

A. Dataset 
As a dataset, we used a synthetic dataset generated by 

gprMax, a finite-difference time-domain-based 
electromagnetic software [20]. The Hertzian dipole 
antenna is placed above concrete around 1 cm and moves 
forward with a step of 5 mm to produce a B-scan. Between 
the transmitter and receiver antenna, there is a range of 4 
cm (see Figure 4). The radar employs a monocycle pulse 
with the center of frequency 2 GHz while the equation of 
the waveform is defined as (4), 𝑊ሺ𝑡ሻ ൌ െ2ට ଶట 𝜓ሺ𝑡 െ 𝜔ሻ𝑒ିటሺ௧ିఠሻమ  (4)

where 𝜓 ൌ 2𝜋ଶ𝑓ଶ, 𝜔 ൌ ଵ , and 𝑓 is the radar frequency. 
The shape of the waveform can be seen in Figure 5. 

In this study, we consider three conditions of 
reinforced concrete: concrete with rebars (Case I); 
concrete with crack (Case II); and concrete with rebars 
and crack (Case III). The sample of data is shown in 
Figure 6. From Table 1, we can see the parameters of the 

 
(a) (b)

Figure 3. The amplitude (a) and phase (b) images of GPR data as 
input of the proposed method. 

 
Figure 2. Proposed dual-input convolutional autoencoder. 
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object, such as relative permittivity (𝜀ሻ and conductivity 
(𝜎). The condition of each component is with various 
depths, various radii, and various spaces (rebars). Each 
case has 3000 B-scan data: 2000 for training, 500 data for 
validation, and 500 data for testing. Thus, in this study, 
we used a total of 9000 data with an equal case 
distribution. 

In this study, we take the semantic segmentation 
problem as the basis for assessing the effectiveness of the 
proposed model. We employ four metrics: accuracy, 
precision, recall, and F1-score. Accuracy is computed by 
dividing the total number of correct predictions by the 
sum of true positive and false negative occurrences. This 
shows the ratio of accurate predictions. Precision 
measures the accuracy in predicting positive classes. This 
metric is calculated by dividing the sum of true positive 
and false positive occurrences by the total number of 
positive predictions. Recall measures the ratio of 
correctly predicted positive classes, determined by 
dividing the sum of true positive and false negative 
occurrences by the total number of true positive 
instances. The F1-score represents the weighted average 
of recall and precision, with a score of 1 indicating 
optimal performance and 0 indicating the poorest. These 
metrics can be expressed as (5)-(8), 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ ்ା்ே்ାிேା்ேାி (5)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑇𝑃𝑇𝑃  𝐹𝑃  (6)𝑅𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃𝑇𝑃  𝐹𝑁  (7)𝐹1 െ 𝑠𝑐𝑜𝑟𝑒 ൌ 2 ൈ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑒𝑐𝑎𝑙𝑙 (8)

where TP stands for true positives, TN for true negatives, 
FP for false positives, and FN for false negatives. These 
four metrics are calculated for each class using a one-vs-
rest approach. TP and TN represent cases where the model 

correctly predicted the positive and negative classes. FP 
denotes cases where the model incorrectly predicted the 
positive class instead of the negative. In contrast, FN 
indicates cases where the model incorrectly predicted the 
negative class instead of the positive.  

B. Implementation 
The proposed model underwent training and testing 

on a 64-bit Windows 10 Pro workstation equipped with an 
Intel Core i7-8700K CPU operating at 3.70 GHz with 12 
cores. The computer memory is 32 GB of RAM, and the 
graphic card is an NVIDIA RTX 3060 GPU. The deep 
learning model was constructed using TensorFlow and 
Keras frameworks. During the training phase, a mini-batch 
size of 8 was utilized alongside a learning rate set at 1-2. 
The maximum epoch is 100. To prevent overfitting, an 
early-check mechanism based on validation loss value was 
integrated into the training process, terminating training 
when performance ceased to improve, with a delay of 10 
epochs. 

IV. RESULTS 
The proposed method performance is evaluated from 

three perspectives: model training process, inversion 
result visualization, and metrics evaluation. A 
comparison with the existing method was also taken to 
see the advancement of the proposed method. 

A. Model Training 
Figure 7 shows the change in the loss curve during 

data training. It clearly shows that the loss converges 
around epoch 80 in both training and validation data. This 
figure also confirms no underfitting or overfitting in the 
training process. 

 
Figure 4. Setup of model for synthetic data generation. 

TABLE 1 
MODEL PARAMETERS FOR SYNTHETIC DATA 

Component 𝜺𝒓 𝝈 Dimension (cm) 

Concrete 6-8 0.0001 width =50,  
height=49 

Rebar (PEC) 1 ∞ radius=0.5-1.5,  
space= 4xR

Crack/Void 1 0 length=5-30, 
width=0.5-2.0 

  

 
Figure 5. Monocycle pulse excited by GPR. 

(a) (b) 
Figure 6. Sample of simulated model for generating synthetic data:  

(a) concrete with rebars and (b) concrete with rebars and cracks. 
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B. Data Inversion Visualization 
Figure 8 compares inversion results using the 

baseline and proposed methods. In case I, there is no 
significant difference in the results between baseline and 
proposed methods. Thus, in this stage, both methods have 
relatively equal performance. However, in cases II and 
III, it can be seen clearly that the proposed method has 
better performance, especially in the shape and area of 
the crack. From those two observations, we can conclude 
that the rebars are easy to detect and invert. The strong 
reflection from the rebar causes this. Meanwhile, the 
crack cannot be detected well since the crack reflection 
is weak, complex, and relatively tight. In case III, the 
crack reflection signal is also masked by the rebar's, so 
the reconstruction result is not as accurate as the two 
previous cases.  
 

C. Metrics Evaluation 
The superiority of the proposed method in the 

inversion results is confirmed further by Table 2. This 
table shows the performance metrics of both methods 
from the semantic segmentation perspective. From this 
table, the proposed method has a higher score in all cases 
and metrics. Although the difference is relatively small, 
those results still should be considered since the metrics 
calculate each pixel's categorization results, and the 
majority of the pixel of the image is concrete. Thus, from 
this evaluation, we can confirm confidently that the 
method performs better than the baseline. 

To further evaluate the proposed method, we also 
compare the model parameter size in Table 3. As we can 
see, the proposed method has a one-third parameter size 
compared to the baseline. This model can solve the 
limitations of the baseline method with huge model 
parameters. With this smaller parameter size, the 

 

Figure 7. Loss curve during the training process. 

TABLE 2 
COMPARISON OF METRICS 

Metrics Case Accuracy 
Baseline Proposed 

Accuracy 
I 0.9877 0.9984 
II 0.9898 0.9926 
III 0.9772 0.9868 

Precision 
I 0.9877 0.9984 
II 0.9899 0.9927 
III 0.9772 0.9870 

Recall 
I 0.9877 0.9984 
II 0.9898 0.9927 
III 0.9772 0.9866 

F1-score 
I 0.9877 0.9984 
II 0.9899 0.9984 
III 0.9772 0.9868 

 Ground truth Baseline Proposed 

 
 

Case I 

 

 

  

 
 

Case II 

 

 
 

  

 
 

Case III 

  

 

 
 

Figure 8. Comparison of inversion result visualization of three observed cases. The colors green, orange, and yellow 
indicate concrete, rebar, and crack or void, respectively. 
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proposed can be processed faster. Thus, the method is 
more feasible to be implemented in real-time, especially 
in the case when complexity and processing time become 
a concern of the GPR operation. 

V. CONCLUSION 
In this report, we present our study about the use of a 

dual-input convolutional autoencoder algorithm for 
generating the reinforced concrete internal structure 
visualization from radar data. The method employs the 
amplitude and phase of the GPR signals. Compared with 
the baseline method, the proposed method is superior in 
almost all observed cases. This superiority is also 
confirmed from qualitative and quantitative perspectives. 
By its simpler model and superior performance, we show 
that the proposed method is feasible enough to be applied 
in real applications. Besides, from this study, we also 
confirm that the phase information on the recorded radar 
image is valuable enough for the data inversion aiming at 
obscured object identification.  

In the next stage of the study, more complex 
conditions, such as the presence of a wet concrete area 
that can negatively affect the reconstruction results, need 
to be investigated. Besides, evaluating the real GPR data 
that may be affected by background noise and 
interference will confidently confirm its actual 
implementation. 
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