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Abstract

Margin tissue detection during intraoperative laparoscopic liver resection (LLR) is required to prevent tumor
recurrence and reduce the likelihood of further surgery. This study proposes an electrical impedance spectroscopy
(EIS) method for margin tissue detection in LLR to determine the boundary interface of normal and cancerous tissue.
This study has three objectives: (1) designs the electrode array configuration to collect multiple EIS impedance
measurements, (2) implements the Feedforward Neural Network (FNN) to classify the orientation of margin tissue
relative to the electrode array by using time-difference impedance indexes, and (3) governs the inflection point
method based on impedance indexes to detect the margin tissue location. The proposed method was evaluated by a
3D numerical simulation of liver tissue composed of cancerous lumps with Iac = 1 mA alternating injection current
at frequencies lf = 1 kHz and hf = 100 kHz. The electrode array consists of 16 electrode pairs each for injection
current and voltage measurements. The variation of margin tissue orientation relative to the electrode array direction
was considered to occur in unidirectional, perpendicular, and diagonal direction with noise variations (Signal-to-
Noise-Ratio: 50 to 90 dB). The FNN trained on 2,400 data points achieves True Positive Rate (TPR) value of 90.2%,
99.4%, and 96.6% for diagonal, perpendicular, and unidirectional respectively in margin tissue orientation
classification, while the inflection point method detects margin tissue location with 75% location at the
unidirectional orientation (y-axis).

Keywords: Laparoscopy liver resection, Electrical impedance spectroscopy, Machine learning algorithm, Time-difference
Impedance indexes, Margin tissue detection.

I. INTRODUCTION
The global prevalence of liver cancer has been

steadily rising, resulting in it being ranked as the fourth
leading cause of death worldwide and accounting for
more than 800,000 deaths each year [1], [2]. Liver
cancer is a prominent contributor to global cancer
mortality, resulting in over 700,000 fatalities annually.
The high prevalence of liver cancer requires an urgent
focus on the development of innovative therapy and
monitoring techniques. The intricate hepatic vascular
structure and the variability of lesion locations make

liver cancer surgery a high-risk treatment. The
utilization of laparoscopic liver resection (LLR) has
demonstrated encouraging outcomes in terms of
decreased need for blood transfusions during surgery
and a shorter duration of hospitalization. LLR is a
minimally invasive surgical procedure used to remove
benign or cancerous liver lesions. It involves making
small incisions through which specialized instruments
and a camera are inserted to perform the resection. LLR
offers several advantages over traditional open liver
resection, including faster postoperative recovery,
reduced blood loss, shorter hospital stays, and better
cosmetic results [3]. The importance of laparoscopic
liver resection lies in its ability to provide patients with
a less invasive treatment option for liver lesions, leading
to faster recovery, reduced pain, and improved cosmetic
outcomes. Additionally, LLR has been shown to have
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Figure 1. The conceptual procedure of margin tissue detection
based on electrical impedance spectroscopy.

Figure 2. The proposed design of the electrode array configuration
for electrical impedance spectroscopy.

lower postoperative mortality and morbidity rates
compared to open liver resection, making it a favorable
option for many patients [3], [4].

The implementation of a novel monitoring method
in LLR for intraoperative liver cancer to determine the
margin tissue location is crucial for enhancing surgical
results, minimizing complications, and yielding
substantial economic ramifications [5], [6]. Margin
tissue assessment is the process of assessing the
boundary between healthy and unhealthy tissue selected
for surgery. It refers to the shortest distance between the
edges of the tumor and the surrounding non-cancerous
tissue in the liver section. This assessment is critical to
ensure that unhealthy tissue is removed in its entirety.
The adequacy of this margin is crucial in determining
the completeness of the resection and has implications
for patient outcomes, including the risk of recurrence
and survival rates. This assessment may involve various
methods, including assessment of resection margin
width and anatomical quality [7]. Some studies suggest
that a more complete assessment of the margins may
assist the veterinarian or human doctor in determining
whether the neoplasm has been completely removed.
The margin valuation method used can affect the level
of positive margin and the total volume of tissue lifted
[8]. The challenge of margin tissue determination is that
both normal and cancerous tissues have similar colors.
Thus, determination by using only a camera may show
an inaccurate result, lack of depth detection, and need a
contrast agent [9], [10].

Several studies have proposed the use of Electrical
Impedance Spectroscopy (EIS) for tissue identification,
which has a potential application for margin tissue
assessment. Halter et al. [11], Mahara et al. [12], and
Murphy et al. [13] examined the use of imaging of
conductivity distribution with radially configured
microendoscopic electrical impedance probes with 17
electrodes with a frequency range from 10 kHz to 1
MHz and tetrapolar electrical impedance measurement.
Even though it was not clear to determine the clear
boundary of the margin tissue by using the
reconstructed conductivity distribution, it showed the
capability to determine the inclusion of a 1 mm
diameter with a conductivity contrast ratio of 10:1 as
compared to the background’s conductivity. The study
of Cheng et al. [14] used tripolar electrical impedance
measurement to calculate the conductivity and

permittivity values of the assessed tissue with a
frequency range from 1 kHz to 349 kHz by moving the
voltage measurement electrode using a robotic arm at a
specific distance. The results showed that different
tissues can be identified consistently with variation
distance, but it was not shown how this method can be
used to identify the margin tissue. Doussan et al. [15]
reported the development of an electrical impedance-
based probe with 32 electrodes, a 12 mm diameter, and
a frequency range from 100 Hz to 1 MHz to generate
3D images of the tissue and classify between muscle
and adipose tissue. The study identified the positive
surgical margins (PSMs) in real-time during radical
prostatectomy (RP) surgery until 1.19 mm depth. Since
the middle area of the electrical impedance-based probe
is the most accurate for reconstructing the image, the
study did not show the margin tissue image's accuracy
for the other areas.

In this study, we propose using electrical
impedance spectroscopy (EIS) for margin assessment
during laparoscopic surgery. To obtain the margin tissue
location, we conduct three objective studies by first
implementing ratio metric profiles in the proposed
electrode array configuration design. The ratio metric
profile is the ratio of impedance MIX, phase PIX, real
part impedance RIX, and imaginary part impedance
IMIX at two different frequencies that are chosen solely
based on the characteristic relaxation of biological
tissues at the lower frequency lf and higher frequency hf.
The aim of using the ratio metric is to reduce the
unnecessary data training required for machine learning.
Secondly, the margin tissue orientation can be classified
by implementing the Feedforward Neural Network
(FNN) model and impedance indexes (MIX, RIX, and
IMIX). Lastly, the margin tissue location at the
impedance index curve is detected by proposing the
inflection point method.

II. EIS ASSISTED IMPEDANCE INDEXES AND
MACHINE LEARNING FOR MARGIN TISSUE

DETECTION

Figure 1 shows the conceptual procedure for
margin tissue detection in LLR based on EIS and the
position of the EIS electrode array in the laparoscopic
probe. The electrode array is attached to one of the
laparoscopic probes and the electrical impedance data
acquisition system. The impedance data from EIS is
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Figure 3. The schematic flow of margin tissue orientation classification by FNN.

collected at two different frequencies (low frequency lf
and high frequency hf), which are selected according to
their relaxation behavior between normal and cancerous
tissue. The impedance indexes of these impedance data
are then used in the FNN to determine the orientation of
margin tissue relative to the electrode array direction.
The orientation of margin tissue can be perpendicular,
unidirectional, or diagonal relative to the electrode array
direction. If the margin tissue orientation is
‘unidirectional’, then the margin tissue location is
detected by using the inflection point method.
Otherwise, the electrode array should be rotated until
the results of FNN are ‘unidirectional.’

A. Electrode Array Configuration
The EIS electrode array configuration proposed in

this study is depicted in Figure 2, also included in
Figure 1. The dimension of the electrode array is limited
by the size allowed for the laparoscopy probe during the
intraoperative surgery. The space among the electrodes
is also designed to be equal to the dimension of each
electrode in order to avoid surface current due to the
narrow space between the adjacent electrodes. The
electrode array is designed in a vertical array in order to
specify the margin tissue location that is unidirectional
to the electrode array.

The electrode array is composed of four columns
and eight rows, with 16 electrode pairs for each current
injection and voltage measurement. The electrode shape
of the current injection is relatively larger in size than
that of the voltage measurement to increase the current
density between the current injection electrode pair, thus
increasing the sensitivity of the voltage measurement.
The scanning measurement protocol can be seen in
Table I. The first scanning measurement is the electrode
pair ea – eb as the current injection and e1 – e2 until e15 –

e16 as the voltage measurement. There are 64 impedance
measurement numbers in total.

B. Feature extraction by impedance indexes
In order to minimize the unnecessary data training of
FNN, this study implements two impedance indexes as
a data feature extraction, which are magnitude index
MIX, real-part index RIX, and imaginary part index
IMIX, as suggested by Ibrahim et al. [16]. Considering
that the conductivity change source classification is a
time-domain analysis, thus, the two impedance indexes
in the time-domain analysis are formulized in (1) to (6).

��� =
�� �−�� �0

�� �0
(1)

��� =
�� �−�� �0

�� �0
(2)

���� =
�� �−��0

�� �0
(3)

where,
�� =

abs ���

abs �ℎ�
(4)

�� =
re ���

abs �ℎ�
(5)

�� =
im ���

abs �ℎ�
(6)

t is an arbitrary unit of time after a reference time t0,
abs(Z) is the magnitude (modulus) of the complex
electrical impedance, re(Z) is the real part of the
complex electrical impedance (re(Z) =
abs(Z)*cos[arg(Z)]), and im(Z) is the imaginary part of
the complex electrical impedance (im(Z) =
abs(Z)*sin[arg(Z)]). While, �� , �� , and �� are the ratio
between abs(Z), re(Z), and im(Z) as compared with the
magnitude (modulus) of the complex electrical
impedance at the hf.
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TABLE I. ELECTRICAL IMPEDANCE MEASUREMENT PROTOCOL.
Measurement
Number

Current Injection
Pair

Voltage Measurement
Pair

1 ea eb e1 e2
2 e3 e4
3 e5 e6
4 e7 e8
5 e9 e10
6 e11 e12
7 e13 e14
8 e15 e16
9 ec ed e1 e2
10 e3 e4
11 e5 e6
12 e7 e8
13 e9 e10
14 e11 e12
15 e13 e14
16 e15 e16
17 ee ef e1 e2
18 e3 e4
19 e5 e6
20 e7 e8
21 e9 e10
22 e11 e12
23 e13 e14
24 e15 e16
25 eg eh e1 e2
26 e3 e4
27 e5 e6
28 e7 e8
29 e9 e10
30 e11 e12
31 e13 e14
32 e15 e16
33 ei ej e1 e2
34 e3 e4
35 e5 e6
36 e7 e8
37 e9 e10
38 e11 e12
39 e13 e14
40 e15 e16
41 ek el e1 e2
42 e3 e4
43 e5 e6
44 e7 e8
45 e9 e10
46 e11 e12
47 e13 e14
48 e15 e16
49 em en e1 e2
50 e3 e4
51 e5 e6
52 e7 e8
53 e9 e10
54 e11 e12
55 e13 e14
56 e15 e16
57 eo ep e1 e2
58 e3 e4
59 e5 e6
60 e7 e8
61 e9 e10
62 e11 e12
63 e13 e14
64 e15 e16

These matrix profiles do not assume any tissue
model and solely consider fundamental physical aspects
of the behavior of electrical impedance in the selected
frequency range [17], [18]. Thus, the accuracy of (1) to

(3) depends on the lower frequency lf and higher
frequency hf selections.

C. Classifier by Feedforward Neural Network
(FNN)
The impedance data is nonlinearly affected by the

location and orientation of the margin tissue relative to
the electrode array. Both orientation and location of the
margin tissue are the sources of impedance change in
EIS measurement. To accurately determine the location
of the margin tissue, the orientation of the margin tissue
must be determined first. In order to determine the
location and orientation of margin tissue, imaging of
conductivity distribution can be used, as shown by the
Electrical Impedance Tomography (EIT) method [19].
However, the measurement protocol should be
increased in order to obtain an accurate image, thus
leading to a more complicated electrical impedance
circuit that is not suitable for a laparoscopic system.

In this study, margin tissue orientation is classified
using the feedforward neural network (FNN), as shown
in Figure 3. The trained classifier of FNN is a fully
connected layer of the neural network and connections
from the network inputs to each subsequent layer from
the previous layer, also called multi-layer perceptron
(MLP). The structure of FNN has one hidden layer with
100 neurons, the two impedance indexes as data input in
the input layer, and the three-label data as data output in
the output layer. This fully connected FNN structure has
� × ℎ + ℎ × � total number of weight connections,
where � = 1, …, � is data input in the input layer, ℎ =
1, …, � is a neuron in the hidden layer, and � =
1, …, � is the number of data output in the output layer.
The weight connections are used to perform the
computation. The computation steps of the network of
one hidden layer FNN for the nth sample of the trained
dataset are as follows:

 the first step (7) is summing the weights in the
hidden layer:

�ℎ
� = 1

� �ℎ�� �� + �� (7)

where �� is the input data (which are impedance
indexes), �ℎ� is the weight vector connecting the
input neurons � th and the hidden layer neuron hth,
and �� is the input variable’s bias term,

 the second step (8) is feeding the summations of the
first step NN computation to the neurons’ output by
using the rectified linear unit (ReLU) activation
function �ℎ:

�ℎ �ℎ
� =

�ℎ
�, �ℎ

� > 0
0, �ℎ

� ≤ 0 (8)

where �ℎ
� is the sum of weights,

 the last step (9) is calculating the output neurons:

��
� = 1

� ��ℎ��ℎ� + �ℎ (9)
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where �ℎ
� is the output of hidden layer neuron hth,

��ℎ� is the weight between the output variable ��
� and

hidden layer neuron hth, �ℎ is the output variable’s
bias term, n is the number of samples which is F
(number of frequency pair of lower frequency lf and
higher frequency hf) times t (number of impedance
measurements in a time domain), � = 1, …, � , and
� = {1, …, �} .

In order to obtain the classifier, the training process
based on supervised learning employs a tuning process
to control the weight (�ℎ� and ��ℎ�) and bias (�� and �ℎ)
parameters based on the minimizing error rate,
including both classification and approximation errors.

III. NUMERICAL SIMULATION STUDIES

A. Forward problem
Figure 4 shows the geometry of the liver model

with EIS electrodes, which liver cancerous tissue
presents. The contact impedance on each electrode is Zc
= 50 . Meanwhile, the electrical properties of liver
normal and cancerous tissues are referred to in the
literature [20], [21]. The selection of two frequencies of
lf and hf is decided where the spectrum of the cancerous
tissue has a distinct value from the normal one; see
Table II [22], [23].

To generate a dataset for training, we have solved
the forward problem by employing a finite element
method (FEM) simulation of electrical potential � �
inside a subdomain  when a current across the surface
of the liver in boundary �Ω is applied on each electrode
of current injection I [24] using (10) to (13).

∇ ∙ � � ∇� � = 0, � ∈ Ω (10)
� � + ��� � �� �

��
= ��, � ∈ ��, � = {1, …, �} (11)

��
� � �� �

��
d�� = �, � ∈ �Ω (12)

� � �� �
��

= 0 , � ∈ �Ω \ �=1
� ��� (13)

where, � ∶=∶=∶= � + 2��� ∈ ℂ [S m−1] is the non-
homogeneous admittivity property of liver tissues, �
and � are the conductivity [S/m] and absolute
permittivity [F /m], respectively in  at the frequency f,
� � ∈ ℂ [V] is the electrical potential distribution, �
∶=∶= �, �, � is the coordinate system in subdomain ,
the electrode number, length, voltage, current, and
contact impedance of the lth electrode are represented
by L, dS, Ul, I and Zc, respectively. The comparison of
conductivity �(�) and relative permittivity ��(�) of each
layer are shown in Table II.

A 3D tetrahedral mesh is used to discretize the
forward problem and solve it using a FEM with
electrodes defined by faces in the 3D mesh [25]. The
procedure is repeated for each current injection and
voltage measurement electrode pair at different
frequencies. The meshing process is conducted via an
open-source software suite for image reconstruction in
electrical impedance tomography and diffuse optical
tomography (EIDORS) in Matlab [26].

B. Dataset Training

1) Variation of conductivity value
The variation of the conductivity value of liver

normal tissue is selected at frequencies lf = 1 kHz and hf
= 100 kHz according to the literature, which is slf = 0.1
S/m and shf = 0.2 S/m [22], [23]. In contrast, the
conductivity value of liver cancerous tissue is defined as
about four times higher than the normal one [22], [23].
At these frequencies, the gradient conductivity of liver
normal tissue and cancerous tissue is quite distinct,
which leads to a high possibility of determination using
impedance measurement. However, no known works of
literature suggest the selection of specific lf and hf
values due to variations of signal-to-noise ratio (SNR)
for different EIS systems and unknown parasitic noises.
Thus, lf and hf can vary and shall be traced along with
the frequency range. This assumption is also supported
by [27]–[29], which indicates that gradient conductivity
may vary over time. In this regard, a multi-frequency
EIS measurement shall be conducted during the
experiment to catch the difference between normal
tissue and cancerous tissue. Multi-frequency EIS

Figure 4. The electrode array configuration of forward model for three different geometries of liver model with cancerous tissue from the
xy-axis point of view.

TABLE II. ELECTRICAL PROPERTIES COMPARISON BETWEEN
NORMAL AND CANCEROUS LIVER TISSUE [22], [23].

Frequenc
y f [kHz]

Conductivity  [S/m] Relative permittivity r [-]

Normal
tissue

Cancerou
s Tissue

Normal
tissue

Cancerous
Tissue

1 0.1 0.28 127581 127581
10 0.11 0.30 49957 49957
100 0.17 0.35 11064 11064
1000 0.3 0.44 1859 1859
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measurement is also suggested by [30] to obtain the best
frequency for the best conductivity visualization.

2) Variation of margin tissue orientation
Figure 4 shows the variation of margin tissue

orientation relative to the electrode array configuration
direction. There are three different orientations:
unidirectional, perpendicular, and diagonal. Each
variation is divided into two regions of tissues, which
are liver normal and cancerous tissue. On each
unidirectional variation, the margin tissue has variation
in the y-axis direction with 400 different locations from
y = 4 mm to 56 mm. The adjacent position of liver
normal and cancerous tissue is also varied and is located
either upper-bottom or bottom-upper (see Figure 4.a).
Additionally, to consider the noise condition in the real
practice for each measurement, each measurement was
modified by adding different SNR = [50, 60, 70, 80, 90]
dB. Consequently, the unidirectional orientation has 800
variation data points. The case of perpendicular
orientation (see Figure 4.b) is also similar to
unidirectional variation, which has 800 variation data
points and has variation in the x-axis direction with 400
difference locations from x = -26 mm to 26 mm.

Meanwhile, in the case of diagonal orientation (see
Figure 4.c), it has variation in terms of y-axis variation
and rotational variation. In terms of y-axis variation, the
center point of margin tissue (xrot, yrot) is varied with 20
different locations from y = 15 mm to 45 mm. In terms
of rotational variation, the margin tissue is rotated from

Rot = [2o,..., 88o] with 20 different rotation angles. The
adjacent position of liver normal and cancerous tissue in
diagonal variation is also varied, which is located either
upper-bottom or bottom-upper. Thus, diagonal variation
has 800 variation data points.

3) Labeling
Labeling is required in the FNN dataset training, as

shown in Table III. Any impedance measurement results
from the data variation of unidirectional, perpendicular,
and diagonal variation is labeled as “unidirectional”,
“perpendicular”, and “diagonal” respectively.

C. Feedforward Neural Network framework
The FNN in this paper was used as a supervised

classification learner in order to classify the margin
tissue orientation prior to the margin tissue location
determination. The FNN was implemented by using a
Matlab Machine Learning and Deep Learning Toolbox
(Mathworks, Natick, MA, United States) on a laptop
with CPU AMD Ryzen 7 PRO 4750U @1.7 GHz. The
validation accuracy Acc [%] with k-fold = 5 is expressed
in (14).

��� = �predict

�samples
× 100 (14)

where, Tpredict is the number of true predictions, and
Tsamples is the number of total samples used in the data
training.

TABLE III. NUMERICAL SIMULATION CONDITIONS.
Case Number Variation margin tissue position/orientation Frequency SNR Label
1 - 800 Unidirectional y = [4, ..., 56] mm

lf = 1 kHz &
hf = 100 kHz

[50, 60, 70, 80,
90] db

Unidirectional
801 - 1600 Perpendicular x = [-26, ..., 26] mm Perpendicular

1601 - 2400 Diagonal Rot = [2o, ..., 88o] ,
xrot = 0, yrot = [15, .., 45] mm Diagonal

Figure 5. The comparison of real part and imaginary part of impedance under reference, unidirectional, perpendicular, and diagonal variation
of margin tissue in the case of frequency lf = 1 kHz and SNR = 90 db.
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IV. RESULTS

A. Margin tissue orientation variation
Figure 5 shows the real part and imaginary part of

impedance under unidirectional, perpendicular, and
diagonal variation of margin tissue in the case of
frequency lf=1 kHz and SNR=90 db. The EIS
measurement can detect the liver cancerous and normal
tissue by referring to the reference measured voltage.
The difference in margin tissue orientation affects the
amplitude at different measurement number pairs.
However, it is not trivial to decide the margin tissue
location based on the comparison of measured
impedance, either in terms of real or imaginary part
impedance.

B. Margin tissue orientation variation classification
Figure 6 shows the performance of FNN to classify

the margin tissue orientation. The true positive rate
(TPR) value represents the ratio of the true prediction
number as compared to the desired true prediction
number. Meanwhile, the false negative rate (FNR)
represents the ratio of false negatives to the total
number of actual positives. The best FNN model should
provide as high a TPR as possible and as low a FNR as
possible. In our studies, the FNN model provides the
TPR values of 90.2%, 99.4%, and 96.6% for diagonal,
perpendicular, and unidirectional, respectively.
Meanwhile, the FNR values are 9.8%, 0.6%, and 3.4%
for diagonal, perpendicular, and unidirectional,
respectively.

C. Margin tissue location determination
Figure 7 shows the comparison of impedance

indexes based on MIX, RIX, and IMIX at different
margin tissue locations of unidirectional orientation.
The variation of each impedance index is shown to
predict the margin tissue location (see the red square
mark at the dashed black line). The y-axis of the MIX,
RIX, and IMIX graphs indicates the number of current
injection pairs. The first current injection pair is ea - eb,
and the last one is eo - ep. The margin tissue location of
unidirectional variation varied from y = 11.7 mm (at the
intersection of the 1st current injection pair, i.e., ea - eb)
to the y = 48.2 mm (at the intersection of the 8th current
injection pair, i.e., eo - ep).

Considering the accuracy of margin tissue location
prediction based on the inflection of the variance of
impedance indexes in Figure 6, the most accurate
locations are from y = 16.5 mm to y = 43 mm, which are
the intersections between the 2nd and 7th current
injection pairs. Thus, the proposed electrode array
configuration, with the composition of eight different
current injection layer, has an accuracy prediction of
almost 75% location at the unidirectional orientation (y-
axis).

V. DISCUSSION AND FUTUREWORKS

A. Reliability of electrode array configuration
The proposed design of electrode array

configuration is reliable in detecting the variation of
margin tissue location in a unidirectional direction, as
shown in the results of Figure 7. The margin tissue
location prediction was shown by a discrete value that
represents the position of the current injection pair
electrodes, because any unidirectional variation between
the adjacent current injection pair will be measured at
the same voltage. The most accurate current injection
pairs to detect the variation of margin tissue are the 2nd
to 7th pairs. The 1st and 8th current injection pairs are not
accurately detecting their margin tissue locations. This
is due to the fringing effect of the electric field at the
edge current injection pairs. The fringing effect of an
electric field is a phenomenon that occurs for electrodes
with a finite length. A uniform electric field usually
exists in the middle of an electrode pair; however, at the
edges of the electrode pairs, the electric field becomes
more non-uniform and tends to extend out into the
surrounding space [31], [32].

B. Reliability of FNN
The impedance results based on margin tissue at

unidirectional, perpendicular, and diagonal orientations
have different features, but they are difficult to
distinguish based on the qualitative analysis. The
developed FNN model also already considers the
variation noise condition to mimic the real-world
practice conditions. The results of the developed FNN
model successfully classify the margin tissue orientation
with reliable accuracy.

C. Reliability of inflection point method
The location prediction of the margin tissue

interface based on the proposed inflection point method
showed prominent results. The inflection point method
calculates the inflection point as a local minimum at the
second derivative of the variance data of impedance
indexes. The idea of the inflection point method is that
the current penetration and electric field distribution at
the interface of two dielectric mediums always
propagate with the smoothing effect, and the gradient
value depends strongly on the ratio of electrical
properties between the adjacent mediums. Thus, any
voltage measurement that is scanned from the two
dielectric mediums tends to deflect.

Figure 6. The accuracy of FNN model for margin tissue
orientation classification.
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D. Future Works
In this study, we have shown a promising method

for margin tissue detection in intraoperative
laparoscopic liver resection. The study was conducted
by using numerical simulation with noise condition

consideration to mimic a real practice. Further studies
will be conducted by manufacturing the electrode array
configuration as we designed and implementing the
proposed method in the laparoscopy system.

Figure 7. the comparison of impedance indexes based on MIX, RIX, and IMIX at different margin tissue location of unidirectional
orientation. The margin tissue location is shown as the red square mark at the dash black line.
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VI. CONCLUSION

In this study, from the numerical simulation, some
concluding remarks are as follows: the designed
electrode array configuration detects cancerous tissue by
showing the different values of real and imaginary
impedance as compared with normal tissue. The margin
tissue orientation significantly affects the trend line of
the real part and the imaginary impedance curve. The
FNN model to classify the margin tissue orientation and
the impedance indexes as feature extraction successfully
classifies the margin tissue orientation with a true
positive rate (TPR) of 90.2%, 99.4%, and 96.6% for
diagonal, perpendicular, and unidirectional, respectively.
The inflection point method detects the margin tissue
location with an accuracy prediction of almost 75% at
the unidirectional orientation (y-axis).
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