
Jurnal Elektronika dan Telekomunikasi (JET), Vol. 24, No. 1, August 2024, pp.52-61

Accredited by KEMDIKBUDRISTEK, Decree No: 158/E/KPT/2021

doi: 10.55981/jet.602

Comparison of YOLOv3-tiny and YOLOv4-tiny in the

Implementation Handgun, Shotgun, and Rifle Detection

Using Raspberry Pi 4B

Faris Zulkarnain S. Hi. Raufa, Djati Handokoa,*, Ilham S Pradanaa, Dimas Aliftab
aDepartment of Physics, Faculty of Mathematics and Natural Science

Universitas Indonesia

Pondok Cina, Kecamatan Beji, Kampus UI Depok, 16424

Jawa Barat, Indonesia
bDepartment of R&D Robotics

Teknologi Handal Lancar

Gading Serpong Boulevard No.M5/18, Kabupaten Tangerang

Banten, Indonesia

Abstract

Criminal activities frequently involve carriable weapons such as handguns, shotguns, and rifle classes. Frequently, the targets

of these weapons that are captured are concealed from plain sight by the people of the crowd. The detection process for these

weapons can be assisted by using deep learning. In this case, we intend to identify the model of the firearm that was detected. This

research aims to apply one of the deep learning concepts, namely, You Only Look Once (YOLO). The authors use versions of

YOLOv3-tiny and Yolov4-tiny for the detection and classification of types of weapons, which are one of the fastest and most

accurate methods of object detection, outperforming other detection algorithms. However, both require heavy computer

architecture. Therefore, YOLOv3-tiny and YOLOv4-tiny, lighter versions of YOLOv3, can be solutions for smaller architectures.

YOLOv3-tiny and YOLOv4-tiny have higher FPS, which is supposed to yield faster performance. Since YOLOv3-tiny and

YOLOv4-tiny are modified versions of YOLOv3, the accuracy is improved, and YOLOv3 is already outperforming Faster Single

Shot Detector (SSD) and Faster Region with Convolutional Neural Network (R-CNN). The authors employ YOLOv3-tiny and

YOLOv4-tiny due to the fact that the Frame Per Second (FPS) and Mean Average Precision (mAP) performance of both approaches

are superior in object detection. The study found that YOLOv3-tiny had a high FPS and low mAP performance: an average

Intersection over Union (IoU) score of 71.54%, an accuracy of 90%, a recall score of 78%, an F1 score of 84%, and a mAP of

86.7%. While YOLOv4-tiny has low FPS and high mAP: an average IoU score of 73.19%, an accuracy of 90%, a recall score of

84%, an F1 score of 87%, and a mAP of 90.7%.

Keywords: Gun detection, deep learning, YOLO, YOLOv3-tiny, YOLOv4-tiny.

I. INTRODUCTION

Crime using fire weapons is a controversial topic. A

state with strict weapon laws does not necessarily have

fewer crime incidents related to fire weapons [1]. In

Indonesia, the spread of fireweapons in society has

become a global phenomenon, which is one of the causes

of crimes emerging with fire weapon misuse. Due to the

lack of organized supervision of legal or illegal fire

weapon civil society ownership, illegal fire weapon

ownership is difficult to track, causing the authorized

officers not to know the exact numbers of fire weapons

spreading in the public. This is what caused crime using

fire weapons to happen many times and threaten others’

safety. Different kinds of fire weapon misuse happen in

the middle of public lives, causing fear and

inconvenience in daily activities. According to the

statistics, around 500 people pass away every day from

gun violence. More than 44% of murder crimes in the

world are related to weapon violence. In 2019 alone,

more than 250,000 people died as a result of firearms

worldwide. Nearly 71% of gun deaths were homicides,

about 21% were suicides, and 8% were unintentional

firearms-related accidents. A smaller subset of gun

deaths occur as the result of mass shootings and school

shootings, which are often highly publicized [2]. To

overcome crime that uses fire weapons is not easy and

takes much time, besides the consciousness of the society

about the authority of fire weapon ownership. A part of

society has considered that fire weapons are their right of

ownership to protect themselves. However, weapons are

used for violence more often than for self-defense [3].

Therefore, controlling weaponry crime from illegal

weapon ownership requires modern techniques to handle

it before a fireweapon crime occurs. Most countries have

already used video surveillance systems to monitor

people around the crowds to identify terrorism and fire

weapon crimes. Although this method is often found

inefficient because under human supervision, whose

thoroughness is different for every person, even

sometimes not always under supervision, detecting fire

weapons in surveillance recordings is one of the reasons

that affect fire weapon crime. Deep learning is a solution

to detect fire weapons in surveillance recording that

could be an option for both automated fire weapon

* Corresponding Author.

Email: Djati.handoko@ui.ac.id

Received: November 23, 2023 ; Revised: January 16, 2024

Accepted: February 01, 2024 ; Published: August 31, 2024

Open access under CC-BY-NC-SA

©2024 BRIN

25-32
25-32

http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/dd9b1ee9d38c3d9ba389a0c0afa8e7bb
https://worldpopulationreview.com/country-rankings/murder-rate-by-country
https://worldpopulationreview.com/country-rankings/suicide-rate-by-country
https://worldpopulationreview.com/country-rankings/mass-shootings-by-country
https://worldpopulationreview.com/country-rankings/school-shootings-by-country
https://worldpopulationreview.com/country-rankings/school-shootings-by-country

Comparison of YOLOv3-tiny and YOLOv4-tiny in the Implementation Handgun, Shotgun, and Rifle Detection Using Raspberry Pi 4B • 53

p-ISSN: 1411-8289; e-ISSN: 2527-9955

detection development and determining detected weapon

types.

The identification and detection object field are more

advanced from time to time, along with knowledge and

technology. Deep learning, or a specific branch of

machine learning, is a new way to represent data that

pushes into layered learning. As time passed, deep

learning developed in detecting objects and classifying

object types, a problem involving skills for humans that,

long ago, could not be understood by machines. By using

deep learning, it can estimate and evaluate objects in an

image through classifications and localizations called

object detection [4]. The chosen detector for object and

face detection included You Only Look Once (YOLO),

Fast Region with Convolutional Neural Network

(RCNN), and Faster-RCNN. This detector has the next

level of precision but light detection in various fields.

Each method has its own advantages and shortcomings.

Nevertheless, YOLO is one of the fastest and most

accurate object detection methods, outperforming other

detection algorithms [5].There are a lot of architectures

and algorithms available in object detection, such as

YOLO and its version [6]–[9]. YOLO is a method

developed by Joseph Redmond around 2015. This

algorithm was developed to get an automatic object
identification process faster and more precisely than the

Convolutional Neural Network (CNN), so YOLO has

been developed many times to detect objects in real-time.

This method is often used in detecting vehicles, people,

fruits, and other objects. YOLO is considered to have

faster and more accurate architecture. Even though the

speed of its detection is fast, YOLO does not have a

detection phase in prior, so the mistake of object

placement is also big. Besides that, YOLO also has

difficulties in detecting small objects that are close to

each other. YOLO also has a heavy computer

architecture that makes the training process take a long

time. YOLOv3-tiny and YOLOv4-tiny version was

created or modified from YOLOv3 for lighter, faster, and

more efficient architecture than the YOLOv3 version

itself. YOLOv3-tiny and YOLOv4-tiny networks have

fewer convolutional layers compared to YOLOv3, so the

training process is faster and can be used to classify and

identify objects. YOLOv3-tiny and YOLOv4-tiny have a

Frame Per Second (FPS) and mean Average Precision

(mAP) that outperforms each other.

Studies about the usage of the YOLO method have

been done many times. The study conducted by Arif

Warsi et al. [10] discussed weapon detection using

YOLOv3 method. Besides that, to minimize false

positive using YOLOv3 method. Estimating the

classification model YOLOv3 is based on considering

one class to determine handgun, shotgun, and rifle

location. In the study, the results of YOLOv3 with

VGG16 or RCNN algorithm were compared. The

objective of the study is to evaluate the YOLOv3-based

detector performance on four different videos and to

minimize false positive using YOLOv3 algorithm. The

study parameter results are precision, recall and F1 score.

The results show the precision ratio on video 1, 2, 3, and

6 YOLO: VGG16 respectively are (98.64%: 88.24%);

(87.06%: 98.7%); (41.77%: 62.5%); (96.51%: 82.46%);

The recall ratio on videos 1, 2, 3, and 6 respectively are

(33.18%: 37.04%); (28.77%: 60.03%); (50.76%: 43.1%);

(61.94%: 48.62%). F1 score ratio (YOLO: VGG16) on

videos 1, 2, 3, and 6, respectively, are (66.18%: 52.17%);

(43.26%: 74.36%); (45.83%: 51.02%); (75%: 61.17%).

On that account, YOLOv3 can be said to have better

detection performance even on low-quality video

compared to RCNN, which is faster. Rana M. Alaqil et

al. [11] discussed an automated weapon detection system

using Faster R-CNN from an image. They conducted a

test of different CNN architectures, Faster R-CNN,

YOLOv2, and four feature extractors (ResNet50,

Inception-ResNetV2, VGG16, and MobileNetV2). Each

Faster R-CNN and YOLOv2 model was implemented

using MATLAB and trained using weapon datasets that

were shown previously. Two cloud service platforms,

Microsoft Azure and Amazon AWS, were used during

the model training. The results show mAP validation

accuracy for Faster R-CNN (ResNet50) as 73%, Faster

R-CNN (Inception ResNetV2) as 81%, Faster R-CNN

(VGG16) as 72%, Faster R-CNN (MobileNetV2) as

70%, and YOLOv2 (ResNet50) as 76%. The best mAP

was obtained from Faster R-CNN, which used Inception-

ResNetV2. For testing time total variations from the

entire series of testing also the average time testing per

image for the same model resulting a test time and an
average test time: MobileNetV2 = 449,10s and 0,74s;

ResNet50 = 662,83s and 1,10s; Inception ResNetV2 =

1061,96s and 1,76s; YOLOv2 = 5,5s and 0,0264s;

VGG16 = 66,04s and 0,11s. As a result, in terms of

training and testing time, YOLOv2 has the shortest time,

followed by VGG16, MobileNetV2, ResNet-50, and

Inception-ResNetV2 lasts. Yunbin Deng et al. [12]

developed a Semantic Embedding (SE) based method for

zero-shot gun and fire detection. By using the Contrastive

Language-Image Pre-Training (CLIP) model pre-

training, the input image and arbitrary text can be mapped

into Semantic vectors, and the similarity can be

calculated. By defining object classes using a Semantic

vector from each class description, very accurate object

detection accuracy can be achieved without training any

new mode. The detection results obtained accuracy

value, False Positive (FP), False Negative (FN), Recall,

Precision, and F1 score respectively as YOLO (%): 86.5;

3.3; 10.3; 79.5; 92.4; 85.5, and SE (%): 99.8; 0.2; 0; 99.6;

99.8; 99.7. For weapon detection accuracy value, FP, FN,

Recall, Precision, and FI were obtained respectively in

YOLO (%): 96.3; 0.9; 2.8; 95.7; 97.3; 96.5, CNN (%):

82.6; 11.2; 6.2; 88.4; 80.9; 84.5, and SE (%): 97.3; 1.7;

1.0; 98; 96.6; 97.3. Hence, even though YOLO already

obtained a good result outperforming the CNN method,

SE can outperform the YOLO method. However, in this

study, the comparison between the SE method with the

YOLO-tiny version, which is a modification resulting

from YOLO, has not yet been conducted. Marks Dextre

et al. [13] discussed weapon detection in real-time using

YOLOv5 on Jetson AGX Xavier. The purpose is to train

weapon detection systems based on the YOLOv5 series

for different datasets. The model was trained by

comparing two YOLO series which are YOLOv5 and

YOLOv3. They used Jetson AGX Xavier architecture

that obtained good precision besides concluding in real-

time. The test image was divided into 3 sources: images

taken from YouTube, cellphone video camera, and film

54 • Faris Zulkarnain S. Hi. Rauf, et al.

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 24, No. 1, August 2024

images, so a total of 366 images were gathered. Images

from the YouTube database was added into

JoinDatabase, and 100 epochs were trained in S dan M

model. The results show precision percentage from

YOLOv5-S, YOLOv5-M, and YOLOv3 respectively as:

99.56%, 99.68%, and 97.30%. YOLOv5-S has a

precision value of 98.56%, mAP (0.5) of 99.32%, and

mAP (5:95) of 79.65%. YOLOv5-M has a precision

value of 98.84%, mAP (0.5) of 97.87%, and mAP (5:95)

of 81.89%. Thus, YOLO can successfully detect weapon

existence, and YOLOv5 is superior to YOLOv3. Yutra

A. Z et al. [14], in the year 2022, discussed automated 2D

material detection using YOLOv7. The study focused on

the nanotechnology field, which is a two-dimensional

material (2D). Because of its unique physical and

chemical properties, this material can be applied in

various industries, such as sensors, batteries, and display

screens. The study suggested an object detection system

based on DL using YOLOv7, to automatically search 2D

materials with few atomic layers (width between 1 to 13

layers). Furthermore, they measure training model

accuracy using Precision, Recall, F1 score, and Average

Precision. The test results showed P= 84.3%; R= 92.1%;

F1 Score= 88%; and AP= 91.3%. The trained model

achieved high accuracy in detecting several layers of

MoS2. Accordingly, YOLO can be said to be successful

in detecting several layers of MoS2 on SiO2/Si substrate

using the YOLOv7 model from a microscopical optic

image. Hangyue Zhao et al. [15] in 2023 discussed UAV

Maritime image object detection based on YOLOv7

improvement. The purpose of this study is to improve

YOLOv7 to detect people, ships, and other objects on

open waters in analyzing scenarios captured by maritime

drones and in search and rescue missions using YOLOv7.

The datasets used in this study are SeaDronesee datasets.

However, SeaDronesee datasets have small target

characteristics and big ocean surface interference that

present a big challenge for general object detectors.

Therefore, to overcome this problem, the study suggested

a YOLOv7-sea detector that has been improved.

Moreover, they integrated a Simple, Parameter-Free

Attention Module (SimAM) to find the attention area in

the scene. The AP results from YOLOv7-sea are 59.00%,

around 7% higher than the baseline model (YOLOv7).

Thus, when YOLO is modified, it will result in a better

value, the same goes for other modifications of YOLO

versions.

In this study, the authors implemented two

improvement methods or modifications from YOLO,

which are YOLOv3-tiny and YOLOv4-tiny, in detecting

fire weapons and determining weapon types. The authors

used a Single Board Computer (SBC), a Raspberry Pi

model 4B, and a Kiyo camera to obtain data in real-time.

The operating system used on Raspberry Pi is Raspbian.

Raspbian operation system was made based on Debian,

which is one of the distributions from Linux OS. It was

expected that YOLOv3-tiny and YOLOv4-tiny could

detect and determine weapon types on camera recordings

in real-time. It is also expected that it could determine the

best mAP and FPS value based on needs because,

between YOLOv3-tiny and YOLOv4-tiny, there will be

better mAP and loss in terms of FPS, and vice versa.

II. METHOD

The research uses digital image processing

techniques to detect weapons and determine their types

on camera recordings. The research process of

determining the type of weapon using YOLO for real-

time detection. The initial phase of this research began

with the preparation of images for a dataset of various

types of weapons to be labeled, including handguns,

shotguns, and rifles. Following this, the image data is

compiled in a folder referred to as a dataset, which is

subsequently processed. Besides that, the authors also

used datasets that are already available on

www.kaggle.com. The dataset comprises images of

weapons, which are subsequently filtered to include only

three types: handguns, shotguns, and rifles. The purpose

is to create more datasets. In this preprocessing, the

image data size modification and data labeling were

conducted. Following this, the data will be trained with

YOLOv3-tiny and YOLOv4-tiny. The objective of

utilizing these two models is to identify the most

effective version of the YOLO method for weapon

detection and classification. Following this, the accuracy

and quality of the model were assessed by comparing the

results of the two training models prior to their execution

in the detection system. If the training model is already

desired, then the model is ready to be implemented for

real-time object detection. The research scheme of the

weapons detection imaging process can be seen in Figure

1.

A. You Only Look Once (YOLO)

You Only Look Once (YOLO) is an object detection

system that is targeted to process real-time and change

object detection into single regression matter, processing

image pixels directly to be bounding box coordinates and

class probability. The YOLO system examined an image

only once (you only look once) in order to make a

prediction regarding the object's location and

identification [6]. Currently, there are different kinds of

Figure 1. Schematic of Research.

Comparison of YOLOv3-tiny and YOLOv4-tiny in the Implementation Handgun, Shotgun, and Rifle Detection Using Raspberry Pi 4B • 55

p-ISSN: 1411-8289; e-ISSN: 2527-9955

object detection methods which are extensions of the

Convolutional Neural Network (CNN) that are

commonly used, such as LeNet, AlexNet, ZFNet,

GoogLeNet, VGGNet, ResNet, and YOLO. Each method

fulfills the fundamental function of CNN in the same way

[16]. In object detection, the YOLO method provides the

quickest and most precise. YOLO unites separate

components of object detection into a single neural

network. YOLO utilizes the features of the overall image

to predict each bounding box, which can be seen in

Figure 2.

YOLO predicts all bounding boxes on all object

classes for an image simultaneously. This indicates that

YOLO considers the entire portion of the image and

every object within it on a global scale. YOLO divides

the given image into 𝑆 × 𝑆 grid. Grid cells can correlate

with one object and predict a fixed number of boxes.

Each box is also given a confidence value. For object

classification estimates, grid cells relate to the probability

number of classes of the model class represented with 𝐶.

Whereas 𝑆 × 𝑆 shows the number of grid cells contained

by the given image, and 𝐵 shows the bounding box

contained in each grid cell (1). The main theme behind

the first version of YOLO or YOLOv1 is to create a

single CNN network for prediction [17]. This confidence

value indicates both the certainty that the box contains

the object and the precision of the predicted box (1).

 𝐶 = 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) x IoUpred
truth (1)

where, IoUpred
truth is the Intersection over Union between

the predicted box and the ground truth.

If there are no objects in the cell, the confidence

value should be zero. Otherwise, the belief value will be

equal to the Intersection of Union (IoU) between the

predicted box and the background truth box (ground

truth). Each bounding box has five predictions: x, y, w,

h, and confidence values. Coordinates (x, y) represent the

center of the box relative to the bounding of the space

cell. Width (w) and height (h) are predicted relative to the

overall picture. Finally, confidence prediction will

represent the IOU between the predicted box and any

ground truth box. Each space cell also predicts the

probability of conditional class C, Pr (𝐶𝑙𝑎𝑠𝑠𝑖 | Object).

This probability is dependent on the space cell containing

the object. YOLO predicts a set of probability classes per

space cell, regardless of the number of boxes B. At the

testing time, we multiply the probability of the

conditional class and the prediction of the confidence of

individual boxes, which gives the class-specific

confidence value for each box (2). This value encodes the

probability of the class that appears in the box and how

well the predicted box corresponds to the object.

 𝑃𝑟(𝐶𝑖|𝑂𝑏𝑗) ∗ 𝑃𝑟(𝑂𝑏𝑗) ∗ IoUpred
truth = 𝑃𝑟(𝐶𝑖)IoUpred

truth (2)

The final predictions are encoded as an 𝑆 × 𝑆 (𝐵 × 5 +
𝐶) tensor.

YOLOv1 has been shown to be able to process

images quickly and with high accuracy. However,

YOLOv1 still has many shortcomings, one of which has

difficulty recognizing small nearby objects caused by the

presence of spatial constraints on its bounding box

prediction [6]. Then, YOLOv2 and YOLO9000 were

able to solve the problems of YOLOv1. YOLOv2 has

superior speeds but lower accuracy, whereas YOLO9000

has high precision by being able to recognize 9000

classes of objects. Although it is able to distinguish new

types of objects, it is still difficult to learn new categories

of objects [6], [7]. YOLOv3 is larger in size than previous

versions and is capable of detecting objects with a higher

frame rate. YOLOv3 applies logistical regression to its

bounding box to better detect objects. In addition, the use

of Softmax has been replaced by the Independent

Logistic Classifier because Softmax is stated to have no

direct influence on performance. In addition, binary

cross-entropy loss is also used during training to predict

class objects. YOLOv3 uses the Darknet-53 architecture

that has the highest size of floating-point operations per

second, which means it can make better use of the GPU,

making it more efficient and faster. However, behind the

higher performance of this previous version, YOLOv3 is

more recommended to run on an old detection matrix

with 0.5 IoU [8]. The square accuracy is usually

measured using the IoU. The IoU calculates the meeting

area of the target prediction box and the groundwork box

and divides it into their connection area. When evaluating

the object detection algorithm, an IoU threshold of 0.5 is

usually used to determine whether the detection is correct

[18]. However, the IoU value = 0.5 has a fairly loose area,

so it is generally desirable to have an IoU greater than 0.5

[19]. Thus, the YOLOv3-tiny and YOLOv4-tiny, a

lighter version of YOLOv3, are the solution. The

convolution layers in the YOLO-tiny architecture are

reduced so the training process can be faster and can be

applied to computers that have adequate specifications

[8]. Table 1 displays the YOLOv3-tiny feature extractor,

while Table 2 exhibits the YOLOv4-tiny feature

extractors.

B. Dataset

The image dataset for this study is a handgun, rifle,

and shotgun images. Image data is taken manually using

webcam. The total number of images in the dataset is

49,230 images in jpg format. In addition to the manually

collected data, the study also takes the dataset from

Kaggle. The dataset of the Kaggle is a collection of

images of weapons, including handguns, rifles, and

shotguns, which will then be trained and tested. The

number of weapons datasets trained and tested can be

seen in Table 3. A total of 44,306 weapon images will be

trained, and a total of 4,924 weapon pictures will be

Figure 2. YOLO Model [6].

56 • Faris Zulkarnain S. Hi. Rauf, et al.

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 24, No. 1, August 2024

tested. The datasets from Kaggle contain a total of 70,800

weapons images.

The image data is then preprocessed, consisting of

image size changes and labeling. Image labeling is an

early stage in which each image in the dataset is labeled

to convey image information. In order to accomplish the

labeling procedure, an image of the bounding box and the

class name of each object are provided. The file.txt

format utilizes the following three class designations for

the labeling: "handgun" for the first class, "rifle" for the

second class, and "shotgun" for the third class.

C. YOLOv3-tiny and YOLOv4-tiny Training Model

After successfully assembling the images into a

single dataset, labeling is done manually with the help of

the LabelImg model tool with YOLO darknet format to

“.weight”. Training design can be seen in Figure 3. If the

model is using YOLO ultralitic then the file to be

produced is “.pt”. The configuration of hyperparameters

is shown in Table 4.

At the training stage, the dataset will be included in

the train set in the "obj.data" file and use the YOLOv3-

tiny and YOLOv4-tiny configurations specified in the

yolov3_training.cfg and yolov4_trainning.cfg files that

serve as load weights and require trained YOLOv3-tiny

and YO LOv4-tiny weights downloaded.

Once the training process is successful then the

training results will be saved in the form of a weight file.

The weight storage process will start from 0, then on the

first 10,000 iterations to the final weight file named

"GUN_cnfg_v3tiny-416x416-2506final.weights". This

best weight file with the file name "GUN_cnfg_v3tiny-

TABLE. 1

YOLOV3-TINY FEATURE EXTRACTOR

Layer Type Filters
Size/

Stride
Input Output

0 Convolutional 64 33/1 4164163 41641616

1 Maxpool 22/2 41641616 20820816

2 Convolutional 32 33/1 20820816 20820832

3 Maxpool 22/2 20820832 10410432

4 Convolutional 64 33/1 10410432 10410464

5 Maxpool 22/2 10410464 525264

6 Convolutional 128 33/1 525264 5252128

7 Maxpool 22/2 5252128 2626128

8 Convolutional 256 33/1 2626128 2626256

9 Maxpool 22/2 2626256 1313256

10 Convolutional 512 33/1 1313256 1313512

11 Maxpool 22/2 1313512 1313512

12 Convolutional 1024 33/1 1313512 13131024

13 Convolutional 256 11/1 13131024 1313256

14 Convolutional 512 33/1 1313256 1313512

15 Convolutional 255 11/1 1313512 1313255

16 Yolo - - - -

17 Route 1 3 - - - -

18 Convolutional 128 11/1 1313256 1313128

19 Upsample - 22/2 1313128 2626128

20 Route 1 9, 8 - - - -

21 Convolutional 256 33/1 2626384 2626256

22 Convolutional 255 11/1 2626255 2626255

23 YOLO - - - -

TABLE. 2

YOLOV4-TINY FEATURE EXTRACTOR

Layer Type Filters
Size/

Stride
Input Output

0 Convolutional 32 33/2 4164163 20820832

1 Convolutional 64 33/2 20820832 10410464

2 Convolutional 64 33/1 10410464 10410464

3 Route 2 - - - -

4 Convolutional 32 33/1 10410432 10410432

5 Convolutional 32 33/1 10410432 10410432

6 Route 5 4 - - - -

7 Convolutional 64 11/1 10410464 10410464

8 Route 2 7 - - - -

9 Maxpool - 22/2 104104128 5252128

10 Convolutional 128 33/1 5252128 5252128

11 Route 10 - - - -

12 Convolutional 64 33/1 525264 525264

13 Convolutional 64 33/3 525264 525264

14 Route 13 12 - - - -

15 Convolutional 128 11/1 5252128 5252128

16 Route 10 15 - - - -

17 Maxpool - 22/2 5252256 2626256

18 Convolutional 256 33/1 2626256 2626256

19 Route 18 - - - -

20 Convolutional 128 33/1 2626128 2626128

21 Convolutional 128 33/1 2626128 2626128

22 Route 21 20 - - - -

23 Convolutional 256 11/1 2626256 2626256

24 Route 18 23 - - - -

25 Maxpool - 22/2 2626512 1313512

26 Convolutional 512 33/1 1313512 1313512

27 Convolutional 256 11/1 1313512 1313256

28 Convolutional 512 33/1 1313256 1313512

29 Convolutional 21 11/1 1313512 131321

30 YOLO - - - -

31 Route 27 - - - -

32 Convolutional 128 11/1 1313256 1313128

33 Upsample - 22/2 1313128 2626128

34 Route 33 23 - - - -

35 Convolutional 256 33/1 2626384 2626256

36 Convolutional 21 11/1 2626256 262621

37 YOLO - - - -

TABLE. 3
GUN DATASET

Gun Dataset Total Gun Images

Training 44,306

Testing 4,924

Comparison of YOLOv3-tiny and YOLOv4-tiny in the Implementation Handgun, Shotgun, and Rifle Detection Using Raspberry Pi 4B • 57

p-ISSN: 1411-8289; e-ISSN: 2527-9955

416x416-2506_best.weights" will be used for detection

on static images and real-time detection. Figure 4 shows

examples of weight files stored on Google Drive. The last

step is using a transfer learning program like OpenCV

DNN. OpenCV DNN for YOLO model reading.

D. YOLOv3-tiny and YOLOv4-tiny Object

Detection

After completing the training process on the Google

Colaboratory platform and obtaining the “.weight” file,

the next step is a real-time weapon detection validation

program. Programming results for the YOLOv3-tiny and

Yolov4-tiny training frameworks are inserted via the

".weight" file. Python is utilized as the programming

language. The validation process is executed on the

Raspberry Pi model 4B Single Board Computer (SBC)

via a VNC that acts as an interface between monitors and

the 4B. The Raspberry Pi is connected to a Kiyo camera

for the purpose of capturing data in real time. In order to

initiate the validation procedure, it is necessary to

download the YOLOv3-tiny and Yolov4-tiny model

endweight files, the.cfg file comprising the YOLOV3-tny

and YOLOV4-tny network hyperparameter

configuration, and the dataset files that have been

previously processed. This validation process is

conducted on Anaconda3 using Jupyter Notebook.

To see the validation results of both frameworks,

rely on the confusion matrix values (true positive (TP),

true negative (TN), false positive (FP), and false negative

(FN), as well as the accuracy, precision, recall, and mean

average precision (mAP) that have been obtained. An

improved outcome is indicated by a higher mAP

presentation and F1-Score score. The results of the

detection and prediction tests are a real-time bounding

box with the label of the name of the class of the weapon,

the percentage or confidence value, and the FPS value.

The accuracy of weapon detection test results and

weapon classification is enhanced as the percentage of

detection and FPS increase.

III. RESULT AND DISCUSSION

Once the training process is fully concluded, the

YOLOv3-tiny network performance test is executed to

assess the model's real-time detection capabilities. The

performance of the YOLOv3-tiny and YOLOV4-tiny

networks in data testing will be evaluated by calculating

the confusion matrix values (TP, FP, TN, and FN),

accuracy, precision, recall, F1 score, and mAP. The

performance test will be performed on some frames of

the video of the test data taken in real-time using the Kiyo

camera. We conducted the detection ourselves by

carrying replicas of handguns, shotguns, and rifles, each

of which contained one to two varieties of weapons, and

by placing samples of weapons and humans inside. In this

test, a specified distance of 2 meters from the camera was

used. The lighting at the time of the test was not very

careful and came only from the terrace house lights at

night. The test results can be seen in Table 5. The output

is obtained on the monitor screen: if a green bounding

box appears, it detects the person, weapon, and type of

weapon. The white description indicates the percentage

of the confidence value.

The Raspberry Pi terminal also exhibits the TP, FP,

and FN values. These values are subsequently converted

into a confusion matrix for YOLOv3-tiny and Yolov4-

tiny, as depicted in Figure 5 and 6, respectively. Predict

1 (true) and Actual 1 (true) indicate the value of TP,

Predict 1 (true) and Actual 0 (false) indicate the FP value,

and Predict 0 (false) and Actual 1 (true) indicate the FN

value. For YOLOv3-tiny, the value of TP is obtained a

total of 1,779, FP = 194, and FN = 500. As for YOLOv4-

tiny, the value of TP is 1,903, FP = 206, and FN = 376.

TABLE. 5

REAL-TIME TESTING RESULT

Actual Result

Handgun
YOLOv3

-tiny

Figure 4. Saved Weight Files

Figure 3. Training and detection design.

TABLE. 4

CONFIGURATION OF YOLOV3-TINY AND YOLOV4-TINY

Type of Configuration Value

Class 3

Max_Batch 100,000

Filter YOLO 30

58 • Faris Zulkarnain S. Hi. Rauf, et al.

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 24, No. 1, August 2024

YOLOv4

-tiny

At this detection, there was a handgun placed in the bag, and

it was detected and identified with confidence values on

YOLOv3-tiny of 72% and FPS 1.94. Whereas on Yolov4-

tiny, it was 81% and FPS 1.73.

Shotgun

YOLOv3

-tiny

YOLOv4

-tiny

This detection involved a shotgun, which was identified

with a 97% confidence value and FPS of 1.92 on YOLOv3-

tiny, and with a 99% confidence value and FPS of 1.73 on

YOLOv4-tiny.

Rifle

YOLOv3

-tiny

YOLOv4

-tiny

At this detection, a rifle was detected and identified with

90% assurance on YOLOv3-tiny and 1.94 FPS, compared

to 99% assurance and 1.73 FPS on YOLOv4-tiny.

Handgun

#2

YOLOv3

-tiny

YOLOv4

-tiny

During this detection, a handgun was identified and detected

with 79% confidence on YOLOv3-tiny and 1.93 FPS,

compared to 93% confidence and 1.73 FPS on YOLOv4-

tiny.

Shotgun,

Handgun,

and rifle

YOLOv3

-tiny

YOLOv4

-tiny

At this detection there were shotguns and handguns that

were deployed very quickly and were successfully detected

and identified with the confidence of the shotgun on

YOLOv3-tiny of 48%, handgun of 37% and FPS of 1.93.

whereas on Yolov4-tiny it was 74% for shotgun, 95% for

handgun, and FPS of 1.73.

Rifle and

Handgun

(YOLOv3

-tiny)

Pocketed rifles and handguns were discovered during this

detection, with a handgun scoring 56% and the rifle

receiving a 56% confidence rating.

Comparison of YOLOv3-tiny and YOLOv4-tiny in the Implementation Handgun, Shotgun, and Rifle Detection Using Raspberry Pi 4B • 59

p-ISSN: 1411-8289; e-ISSN: 2527-9955

Shotgun

(YOLOv3

-tiny)

A shotgun was detected successfully but failed to be

classified as a "handgun" at this time due to the fact that the

camera captured only a portion of the shotgun's form or

there was an insufficiency of training datasets.

Shotgun,

Handgun,

and Rifle

YOLOv3

-tiny

YOLOv4

-tiny

 At this detection, there were shotguns, handguns, and rifles

that were successfully detected and classified.

In addition, the Raspberry Pi Terminal also displays

the Precision, Recall, F1 score, average IoU, and mAP

values. The parameter values for YOLOv3-tiny and

Yolov4-tiny are presented in Table 6.

A comparison graph depicting the mAP and loss

values of the YOLOv3-tiny and Yolov4-tiny models

utilized in this investigation is illustrated in Figures 7 and

8. The horizontal axis of the graph indicates the number

of times a YOLO model has been trained, while the

vertical axis represents the loss value. The blue line

represents the loss value, which decreases as the amount

of training increases (the lower the value, the better). The

red line indicates the mAP value, which increases with

the increasing number of training until it merges to a

constant value and becomes flat (the higher the value, the

better). The optimal results obtained when the YOLOv3-

tiny and Yolov4-tiny model mAP values were applied to

the Raspberry Pi in this study indicate their

implementation success.

For comparison, to evaluate the performance of the

full-size YOLOv3-tiny model applied to the Raspberry

Pi, after 100,000 iterations, the mAP value was 86.7%,

while the performance for the full-size yOLOv4-tiny
models applied on the RasPberry Pi, after 100,000

iterations, the mAP value was 90.7%, which represents

an increase of 4% of the mAP value. Loss comparison for

YOLOv3-tiny has an average loss value of 0.7107, and

for YOLOv4-tiny has an average loss value of 0.4375.

Thus, the graph shown shows that the number of

iterations is closely related to the high loss of the object.

Figure 5. Confusion Matrix of YOLOv3-tiny.

Figure 6. Confusion Matrix of YOLOv4-tiny.

TABLE. 6

THE PERFORMANCE OF YOLOV3-TINY AND YOLOV4-TINY

Model
Avg.

IoU (%)

Precision

(%)

Recall

(%)

F1

Score

(%)

mAP 0.5

(%)
FPS

YOLOv3-

tiny
71,54 90 78 84 86.7 0.62 s

YOLOv4-

tiny
73.19 90 84 87 90.7 0.95 s

Figure 7. Loss Graph and mAP of YOLOv3-tiny.

60 • Faris Zulkarnain S. Hi. Rauf, et al.

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 24, No. 1, August 2024

Based on the graph, the higher the number of epochs, the

lower the trend of loss of objects detected during training.

IV. CONCLUSION

In this research, the efficacy of YOLO in object

detection and classification for weapon categories was

demonstrated. The confusion value of the matrix and

mAP of the YOLOv4-tiny framework is better than that

of the YOLOv3-tiny framework. YOLOv3-tiny

frameworks have an accuracy of 90% or 0.9 which means

they have almost perfect values (equal to 1), recall or

overall detection rate of 78%, F1 score of 84%, mAP of

86.7%, and average loss of 0.7107. While YOLOv4-tiny

Frameworks has a precision of 90% or 0.9 which means

it has almost perfect values (equal to 1), recall or overall

detection rate of 84%, F1 score of 87%, mAP of 90.7%,

and average loss of 0.4375. As a result, the value of real-

time network performance tests is remarkably high.

This study demonstrates that the system exhibited

the capability to identify multiple weapons and classify

them accordingly, even in situations where the weapons

were partially obscured by other objects or only partially

visible. Model B Raspberry Pi 4 is already capable of

resolving the YOLOv3s issue with its higher computer

specifications. However, an emerging issue arises in the

form of the system's continued inability to detect

weapons when objects are in motion at remarkable

speeds. This can be enhanced by using a Raspberry Pi

model or a more sophisticated microcontroller.

Furthermore, the system's performance will be enhanced

by incorporating additional datasets or enhancing the

image quality of datasets related to the shotgun class.

This study also concluded that although YOLOv3-

tiny is not superior to YOLOv4-tiny in the detection of

mAP values, it is superior in the speed of FPS values

compared to YOLOv4-tiny. The FPS of YOLOv3-tiny is

documented to be 1.9, while that of YOLOv4-tiny is 1.7.

This gap can be attributed to the lighter computer

architecture of YOLOv4-tiny, which consequently

enables for a quicker detection time. Therefore, the

system performance of both of these frameworks is

already quite excellent, surpassing their respective mAP

and FPS values, depending on whether the user is more

concerned with speed or precision.

DECLARATIONS

Conflict of Interest

The authors have declared that no competing interests exist.

CRediT Authorship Contribution

Faris Zulkarnain S. Hi. Rauf: Conceptualization, Methodology,

Writing - Original Draft, Writing - Reviewing & Editing,

Hardware and Software Data Curation; Djati Handoko:

Conceptualization, Methodology, Supervision, Validation,

Resources; Ilham S Pradana: Formal Analysis; Dimas Alifta:

Hardware and Software Data Curation.

Funding

Research reported in this publication was supported by Dr.

Djati Handoko as head of Physics Department University of

Indonesia.

Acknowledgement

The authors would like to thank University of Indonesia that

support the completion of this research.

REFERENCES

[1] J. Celentano and E. Abdelfattah, “Analyzing Gun Violence in the

United States,” in 2020 11th IEEE Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON),
2020, pp. 258–261. doi:

10.1109/UEMCON51285.2020.9298154.

[2] “2023 World Population Review. Gun Violence,” in Amnesty

International, 2023. [Online]. Available:

https://www.amnesty.org/en/what-we-do/arms-control/gun-
violence/

[3] D. Hemenway and M. Miller, “Gun Threats Against and Self-

defense Gun Use by California Adolescents,” Arch. Pediatr.

Adolesc. Med., vol. 158, no. 4, pp. 395–400, Apr. 2004, doi:
10.1001/archpedi.158.4.395.

[4] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection

with Deep Learning: A Review,” IEEE Trans. Neural Networks

Learn. Syst., vol. 30, no. 11, pp. 3212–3232, 2019, doi:

10.1109/TNNLS.2018.2876865.
[5] W. Fang, L. Wang, and P. Ren, “Tinier-YOLO: A Real-Time

Object Detection Method for Constrained Environments,” IEEE

Access, vol. 8, pp. 1935–1944, 2020, doi:

10.1109/ACCESS.2019.2961959.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proc. IEEE

Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016, pp.

779–788, Dec, 2016, doi: 10.1109/CVPR.2016.91.

[7] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,”

in Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,
CVPR, Jan, 2017, vol. 2017, pp. 6517–6525, doi:

10.1109/CVPR.2017.690.

[8] J. Redmon and A. Farhadi, “YOLOv3: An Incremental

Improvement,” 2018, [Online]. Available:

http://arxiv.org/abs/1804.02767
[9] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4:

Optimal Speed and Accuracy of Object Detection,” 2020,

[Online]. Available: http://arxiv.org/abs/2004.10934

[10] A. Warsi, M. Abdullah, M. N. Husen, M. Yahya, S. Khan, and N.

Jawaid, “Gun Detection System Using Yolov3,” in 2019 IEEE
International Conference on Smart Instrumentation,

Measurement and Application (ICSIMA), 2019, pp. 1–4. doi:

10.1109/ICSIMA47653.2019.9057329.

[11] R. M. Alaqil, J. A. Alsuhaibani, B. A. Alhumaidi, R. A. Alnasser,

R. D. Alotaibi, and H. Benhidour, “Automatic Gun Detection
From Images Using Faster R-CNN,” in 2020 First International

Conference of Smart Systems and Emerging Technologies

(SMARTTECH), 2020, pp. 149–154. doi: 10.1109/SMART-

TECH49988.2020.00045.

[12] Y. Deng, R. Campbell, and P. Kumar, “Fire and Gun Detection

Figure 8. Loss Graph and mAP of YOLOv4-tiny.

Comparison of YOLOv3-tiny and YOLOv4-tiny in the Implementation Handgun, Shotgun, and Rifle Detection Using Raspberry Pi 4B • 61

p-ISSN: 1411-8289; e-ISSN: 2527-9955

Based on Sematic Embeddings,” in 2022 IEEE International

Conference on Multimedia and Expo Workshops (ICMEW), 2022,

pp. 1–4. doi: 10.1109/ICMEW56448.2022.9859303.

[13] M. Dextre, O. Rosas, J. Lazo, and J. C. Gutiérrez, “Gun Detection

in Real-Time, using YOLOv5 on Jetson AGX Xavier,” in 2021

XLVII Latin American Computing Conference (CLEI), 2021, pp.

1–7. doi: 10.1109/CLEI53233.2021.9640100.

[14] Y. A. Zenebe, L. Xiaoyu, W. Chao, W. Yi, H. A. Endris, and M.

N. Fanose, “Towards Automatic 2D Materials Detection Using

YOLOv7,” in 2022 19th International Computer Conference on
 Wavelet Active Media Technology and Information Processing

(ICCWAMTIP), 2022, pp. 1–5. doi:

10.1109/ICCWAMTIP56608.2022.10016569.

[15] H. Zhao, H. Zhang, and Y. Zhao, “YOLOv7-sea: Object

Detection of Maritime UAV Images based on Improved
YOLOv7,” in 2023 IEEE/CVF Winter Conference on

Applications of Computer Vision Workshops (WACVW), 2023,

pp. 233–238. doi: 10.1109/WACVW58289.2023.00029.

[16] A. Saxena, “An Introduction to Convolutional Neural Networks,”

Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 12, pp. 943–947,
2022, doi: 10.22214/ijraset.2022.47789.

[17] I. Khurram, M. M. Fraz, M. Shahzad, and N. M. Rajpoot, “Dense-

CaptionNet: a Sentence Generation Architecture for Fine-grained

Description of Image Semantics,” Cognit. Comput., vol. 13, no.

3, pp. 595–611, 2021, doi: 10.1007/s12559-019-09697-1.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”

Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2010, doi:

10.1007/s11263-009-0275-4.

[19] C. L. Zitnick and P. Dollár, “Edge Boxes: Locating Object

Proposals from Edges BT - Computer Vision – ECCV 2014,”
2014, pp. 391–405.

	I. Introduction
	II. Method
	A. You Only Look Once (YOLO)
	B. Dataset
	C. YOLOv3-tiny and YOLOv4-tiny Training Model
	D. YOLOv3-tiny and YOLOv4-tiny Object Detection

	III. Result and Discussion
	IV. Conclusion
	Declarations
	References

