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Abstract 

This study examines and compares three autonomous underwater vehicles (AUV) steering control techniques using the 
following three control algorithms: proportional-integral-derivative (PID), fractional order PID (FOPID), and neural network PID 
(NN-PID). This investigation aims to comprehensively understand each controller’s response regarding step input scenarios, 
trajectory changes, and when encountering disturbances. The response analysis will evaluate the strengths and weaknesses of the 
controller by examining parameters such as rise time, settling time, settling min, settling max, overshoot, peak, and peak time for 
each controller response. The root mean square error (RMSE) technique will be applied to determine the accuracy performance of 
each controller strategy, allowing users to select the most suitable controller option confidently. FOPID displays the best settling 
time of 3.2218 seconds, while PID stands out in rise time, achieving 0.4725 seconds. The results indicate that NN-PID is the top 
performer as it reduces overshoot to 0.3022%. Among the three controllers tested, FOPID had the smallest RMSE value, while the 
NN-PID control’s slower response and larger error resulted in a smaller overshoot than PID and FOPID. This factor is due to the 
online learning process on NN-PID, which requires time. Based on the simulation results, FOPID outperforms PID in settling time 
and produces the smallest error due to the inclusion of parameters λ and μ, leading to improved control performance. 
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I. INTRODUCTION 

Autonomous underwater vehicles (AUVs) are 
widely recognized for their ability to operate underwater 
without human intervention, making them increasingly 
important in various applications. AUVs are commonly 
used for offshore surveys, marine research, fisheries 
management, oceanography, and exploration of 
underground flooded mines [1]–[5]. However, their 
deployment has several challenges, such as 
communication, localization, and navigation in 
underwater environments [2]. AUVs were developed to 
meet the requirements of multipoint short-term 
synchronous offshore surveys [1]. The critical issues in 
underwater imaging with AUVs include the 

characteristics of the underwater environment, camera 
optics, preprocessing, image mosaicking techniques, and 
algorithmic processing [4]. This investigation is of great 
importance for marine science as it will significantly 
impact the exploration of natural resources [6]. 

AUVs are of growing importance in marine 
exploration, research, and industry due to their ability to 
operate independently and collect data in various marine 
environments. AUVs offer several advantages, such as 
their capacity to obtain high-resolution maps of the deep 
seafloor, a feature useful for studying seafloor 
morphology, geology, and ecology [7]. Moreover, it can 
collect various data types, including water column 
properties, seafloor imagery, and acoustic data [8]. 
Objectively, this craft can be more cost-effective than 
traditional research vessels due to their extended 
operational capabilities and greater ocean coverage [8]. 
Additionally, they increase safety when exploring 
hazardous environments, including deep-sea 
hydrothermal vents, by eliminating the risk to human life 
[7]. According to an article published in Marine Geology, 
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forthcoming advances in AUV technology embrace 
novel vehicles with upgraded hovering, elongated 
endurance, and improved sampling capabilities 
[8]. Steering control systems are essential for the 
navigation and successful completion of missions for 
every autonomous vehicle. AUVs are incredibly 
maneuverable and can be programmed to follow precise 
routes or perform particular tasks. However, because of 
environmental disturbances, underactuated issues, 
system constraints, and coupling, controlling the 
trajectory of AUVs is challenging [9]. Therefore, a 
successful mission necessitates the development of 
navigation and motion control systems.  An academic 
article [10] discussed the progress in developing such 
systems and provided initial insights into the 
development of navigation and motion control systems 
for AUVs with both automatic and manual 
control.  Manual control is carried out in real-time by an 
operator via a fiber-optic cable using a joystick. 
Automatic control enables the AUV to move 
independently along a specified trajectory at a given 
depth and speed. The AUV also features a collision 
avoidance system that uses readings from a forward-
facing acoustic rangefinder to estimate the time before 
impact based on the AUV’s analytical model. Computer 
simulation using the analytical model was employed to 
assess the performance features of the devised control 
and navigation algorithms. Following verification of 
operability, preliminary tests were conducted on the 
AUV. During the tests, the AUV’s onboard equipment 
and navigation system readings were recorded and 
compared with those of the reference system. The 
reference system was also employed to evaluate the 
developed control and navigation algorithms. Another 
academic study [9] offered a comprehensive examination 
of the complexities involved in controlling craft 
trajectory tracking. It assesses several models and control 
strategies proposed in academic literature, articulating 
the pros and cons of each approach and offering 
examples of successful AUV missions that have 
implemented these strategies. It assesses several models 
and control strategies proposed in academic literature, 
articulating the pros and cons of each approach and 
offering examples of successful AUV missions that have 
implemented these strategies. 

The efficacy of diverse steering control approaches 
in AUVs is a critical research issue explored in numerous 
scholarly works. AUVs exhibit exceptional 
maneuverability and can be programmed to trace 
predefined courses or execute specific tasks. However, 
due to glitches associated with environmental factors, 
actuation, and system coupling, tracking the trajectory of 
an AUV can be quite arduous [9]. Therefore, developing 
efficient steering control methods is imperative for the 
productive operation of AUVs [11]. Other previous 
studies also examined various steering control methods 
for AUVs [9], [11]. This study presents an overview of 
the key aspects of control-oriented models and 
methodologies of control strategies employed for 
trajectory tracking of AUVs. The article explores 
different mathematical models and control strategies for 
underwater marine craft, including optimal, nonlinear 

time-invariant, adaptive, robust, and intelligent control. 
Successful AUV missions that have utilized these 
strategies are provided as examples. Another academic 
article cited as [12] discussed steering control methods 
for AUVs and proposed an improved artificial potential 
field algorithm aided by multisource data for AUV path 
planning. The study explored the utilization of a 
gyroscope to gauge the dimensions of the steering angle 
and attack angle in real time and applied Kalman filtering 
to the AUV’s steering angle.  

Additionally, [10] outlined the initial outcomes of 
developing AUV navigation and motion control systems. 
The article delved into the AUV’s control system, which 
enables manual and automatic control. Real-time manual 
control is executed by the operator through a joystick via 
fiber-optic cable. Automatic control allows the AUV to 
move independently along a predefined trajectory at a 
specified depth and speed. Furthermore, the article 
examines employing computer simulation to validate the 
performance characteristics of the constructed control 
and navigation algorithms, utilizing the analytical AUV 
model. 

Addressing the research problem of precise and 
efficient steering control in AUVs is crucial. Moreover, 
the steering system is a vital constituent of AUVs, and its 
nonlinear inputs, like dead zone and saturation, can 
drastically influence the actuator for heading control of 
underactuated AUVs [13]. Therefore, developing 
optimal control systems for AUVs’ steering and depth 
subsystems is crucial to improving their maneuvering 
precision, stability, and battery life [9]. Additionally, 
establishing trajectory-tracking models is necessary to 
enhance the decision-making and intervention ability of 
the system [14]. Implementing decoupling algorithms 
and PSO-ADRC controllers can aid stable attitude 
stabilization control of AUVs [10]. It is crucial to address 
the research problem of precise and efficient steering 
control systems in AUVs to guarantee the necessary 
accuracy, reliability, and stability for accomplishing 
various tasks. By doing so, it is possible to enhance their 
overall performance and safety while reducing human 
intervention requirements. Improved control systems can 
significantly enhance AUVs' performance and safety 
significantly. By developing new control-oriented 
models, undertaking research into the estimation of 
unknown inputs, and exploring more innovative control 
strategies, the trajectory tracking of AUVs can be 
improved [9]. These technologies are gradually 
advancing, and attention is being given to the impact of 
environmental and human factors and their interactions.  

Consequently, risk analysis investigations for the 
operations of AUVs are growing in significance [13]. 
AUVs with a propulsion system capable of high-speed 
movement may lead to additional communication 
limitations, like the Doppler effect or self-generated 
noise. For this reason, the communication aptitude of 
AUVs is also a vital component to consider [15]. 

The research assesses the efficiency of four steering 
control approaches PID, FOPID, and neural networks in 
enhancing the navigation and maneuverability of 
autonomous undersea vehicles, with a particular focus on 
the REMUS platform. The structure of the paper is 
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outlined as follows: first, a literature review on AUV 
control methods, followed by a meticulous explication of 
the methodology, experimental setup, and outcomes, and 
ultimately, concluding with a discussion of the 
implications and future research directions. 

II. SYSTEM MODEL AND CONTROL DESIGN 
This section examines the intricate mechanisms and 

methodologies utilized in our research to provide a 
comparative analysis of steering control systems. The 
principal objective of this study is to scrutinize and 
contrast three distinct steering control paradigms 
meticulously: fractional order proportional-integral-
derivative (FOPID), proportional-integral-derivative 
(PID), and neural network (NN) control systems. By 
comparing these diverse methodologies, we aim to 
elucidate their subtleties, advantages, and drawbacks 
within steering control applications. 

This study utilized simulation-based methodology to 
examine the control strategy that we put forward 
extensively. Using simulation tools, we carefully devised 
a control approach mirroring real-world 
implementations. This technique enabled us to 
investigate various scenarios, systematically manipulate 
variables, and precisely observe controller response. By 
utilizing simulation, we obtained valuable insights into 
three standard control strategies. This has illuminated 
subtle patterns and disparities that could be very costly to 
detect through conventional experimentation alone. In 
our comparative analysis of PID, FOPID, and NN 
controllers for marine navigation systems, we justify 
their distinct applications and advantages within the 
maritime domain. PID controllers have emerged as a 
dependable choice in marine navigation due to their 
widespread use and ability to provide precise control 
[16]–[18]. This is especially obvious in tasks such as 
regulating the shaft speed of marine electric propulsion 
systems. Additionally, FOPID controllers, as a more 
sophisticated modification version of PID, offer 
improved response dynamics and increased stability, 
making them promising for improving navigation system 
performance in varying sea conditions [19]. Furthermore, 
NN controllers demonstrate adaptability and 
effectiveness in real-time decision-making processes, 
finding applications in various maritime scenarios, such 
as ship berthing, guidance, and heading control systems 
[20]–[23]. By comparing these three controllers, we aim 
to provide valuable insights into their strengths and 
suitability for various aspects of marine craft navigation. 
Overall, PID, FOPID, and NN controllers are beneficial 
in marine navigation as they can provide accurate system 
output control output and have been implemented in 
various marine navigation problems. 

A. AUV Mathematical Model 
Designing the AUV motion model involves 

analyzing the AUV motion dynamics, which requires a 
thorough comprehension of the reference axis system. 
Understanding the reference axis system is a crucial 
prerequisite for creating the AUV motion model and 
studying the AUV motion dynamics. The equation of 
motion is based on six degrees of freedom (DOF) as seen 

in Figure 1 and Table 1, which is similar to that of a 
submarine and employs the Earth Fixed Frame (EFF) and 
Body Fixed Frame (BFF) axes. 

The general 6-DOF (Six Degree of Freedom) 
equations of motion of the AUV consist of the first three 
equations for translational motion (surge, sway, heave), 
and the next three equations of motion (roll, pitch, yaw) 
are for rotational motion [24]–[26], which can be written 
as (1). 

 𝑴ோ஻𝒗ሶ + 𝑪ோ஻ሺ𝒗ሻ𝒗 = 𝝉ோ஻ (1) 

The vectors 𝒗 = ሾ𝑣ଵ 𝑣ଶሿ் comprising of 𝒗𝟏 =ሾ𝑢 𝑣 𝑤ሿ்and 𝒗𝟐 = ሾ𝑝 𝑞 𝑟ሿ் denote the linear and 
angular velocities expressed in BFF. Additionally, 𝝉 =ሾ𝛴𝑋 𝛴𝑌 𝛴𝑍 𝛴𝐾 𝛴𝑀 𝛴𝑁ሿ் are external 
moments acting on the AUV. 𝑴ோ஻ refers to the mass of 
the AUV's rigid body, which can be expressed as the rigid 
body mass matrix, as in (2). 

 𝑴ோ஻ = ቈ 𝑚𝐼ଷ×ଷ −𝑚𝑆൫𝒓𝒈൯𝑚𝑆൫𝒓𝒈൯ 𝐼௢ ቉ (2) 

Where 𝐼ଷ×ଷ represent 3 × 3 identity matrix, 𝑆ሺ∙ሻ represents 
a 3 × 3 skew-symmetric matrix, as seen in (3). The 
vector 𝑟௚ = ሾ𝑥௚ 𝑦௚ 𝑧௚ሿ denote the AUV center of 
gravity. 

 𝑆൫𝒓𝒈൯ = ቎ 0 −𝑧௚ 𝑦௚𝑧௚ 0 −𝑥௚−𝑦௚ 𝑥௚ 0 ቏ (3) 

𝐼௢ is the inertial tensor of the AUV, which is a symmetric 
and positive definite tensor as in (4). 

 𝐼௢ = ቎ 𝐼௫௫ −𝐼௫௬ −𝐼௫௭−𝐼௬௫ 𝐼௬௬ −𝐼௬௭−𝐼௭௫ −𝐼௭௬ 𝐼௭௭ ቏ (4) 

The formulation also includes 𝑪ோ஻ matrix or rigid body 
Coriolis matrix as in (5). 

 
Figure 1. Reference frame of six degrees of freedom of AUV motion 

(Body fixed frame and earth fixed frame). 

TABLE 1 
AUV TERMS OF REFERENCE NOTATION 

AUV 
Motion 

Positions/Angle 
Euler 

Linear-
Velocities/Angular 

Velocity 

Forces/ 
Moments 

Surge 𝑥 u 𝑋
Sway 𝑦 𝑣 𝑌
Heave 𝑧 𝑤 𝑍
Roll Φ 𝑝 𝐾
Pitch Θ 𝑞 𝑀
Yaw 𝜓 𝑟 𝑁
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𝑪ோ஻ሺ𝒗ሻ= ቈ 0ଷ×ଷ −𝑚𝑆ሺ𝒗𝟏ሻ − 𝑚𝑆ሺ𝒗𝟐ሻ𝑆൫𝑟௚൯−𝑚𝑆ሺ𝒗𝟏ሻ + 𝑚𝑆൫𝒓𝒈൯𝑆ሺ𝒗𝟐ሻ −𝑆ሺ𝐼௢𝒗𝟐ሻ ቉ (5)

B. Steering Model Linearization 
When the AUV moves horizontally, changing the 

rudder deflection causes a yaw moment that alters the 
heading direction. Steering control depends on three 
states affecting sway speedሺ𝑣ሻ, yaw rate ሺ𝑟ሻ, and yaw 
angle ሺ𝜓ሻ, with the rudder deflection ሺ𝛿𝑟ሻ serving as the 
control input, in the Euler Angle attitude term we can 
define angular velocity as in (6). 

 ቎𝜙ሶ𝜃ሶ𝜓ሶ ቏ = ቎1 𝑠𝜙𝑡𝜃 𝑐𝜙0 𝑐𝜙 −𝑠𝜙0 ௦థ௖ఏ ௖థ௖ఏ ቏ ቈ𝑝𝑞𝑟቉ (6) 

For the purposes of this study, it is assumed that the 
velocities in the x, y, and z directions (𝑢, 𝑤, p, and 𝑟) are 
all equal to zero, as well as the coordinates of the object's 
center of gravity (𝑥௚, 𝑦௚, and 𝑧௚). Thus, combining (1), 
and (6) yields a straightforward matrix equation that 
represents the simplified linear steering model as in (7). 

൥𝑚 − 𝑌௩ሶ −𝑌௩ሶ 0−𝑁௩ሶ 𝐼௭ − 𝑁௥ሶ 00 0 1൩ ൥𝑣ሶ𝑟ሶ𝜓ሶ ൩ − 

 ൥𝑚 − 𝑌௩ሶ −𝑌௩ሶ 0−𝑁௩ሶ 𝐼௭ − 𝑁௥ሶ 00 0 1൩ ൥𝑣ሶ𝑟ሶ𝜓ሶ ൩ = ൥𝑌ఋ௥𝑁ఋ௥0 ൩ ሾ𝛿𝑟ሿ  (7) 

The parameter values pertaining to the AUV dynamics 
are presented in Table 2. 

C. Fractional Order PID (FOPID) 
The combination of controls can address limitations 

and emphasize the benefits of each component [27]. The 
standard form of the mathematical model for a PID 
controller is as (8). 

 𝑢ሺ𝑡ሻ = 𝐾௣𝑒ሺ𝑡ሻ + 𝐾௜ ׬ 𝑒ሺ𝑡ሻ௧଴ 𝑑ሺ𝑡ሻ + 𝐾ௗ ௗௗሺ௧ሻ 𝑒ሺ𝑡ሻ (8) 

where 𝑢ሺ𝑡ሻ represents the output of the PID controller 
and e(t) denotes the error as in (9). 𝐾௣, 𝐾௜, and 𝐾ௗ signify 
the proportional, integral, and derivative gains for the 
PID controller. Fractional Order PID (FOPID) is a 
controller that merges the PID controller with the 
fractional calculus idea. The FOPID controller 
mathematical model's general form is presented here 
[28]. 

 𝑢ሺ𝑡ሻ = 𝐾௣𝑒ሺ𝑡ሻ + 𝐾௜𝐷ିఒ𝑒ሺ𝑡ሻ + 𝐾ௗ𝐷µ𝑒ሺ𝑡ሻ        (9) 

where 𝑢ሺ𝑡ሻ represents the output of the FOPID controller 
and 𝑒ሺ𝑡ሻ denotes the error, where and refer to the order 
of integral and differential operators, respectively. 𝐾௣, 𝐾௜, 
and 𝐾ௗ correspond to the P= proportional, integral, and 
derivative gains for the FOPID controller. D is expressed 
in the fractional differ integral form of Grunwald-
Letnikov. From equation (9), five parameters will be 
tuned separately for the FOPID controller: 𝐾௣, 𝐾௜, 𝐾ௗ, λ, 
and μ. The Ziegler-Nichols method can be utilized to 
determine the values of Kp, Ki, and Kd. The value of λ 

and μ can be chosen within the range of 0 < λ < 1 and 0 
< μ < 1, as noted in reference [28]. It is worth noting that 
while Mohamed determined the values of λ and μ within 
the range of 0 < λ < 2 and 0 < μ < 2, as reported in 
reference [29], another option exists. The λ and μ tuning 
method developed by Yeroglu and colleagues, as 
outlined in the reference [30], offers an alternative 
method to calculate the values of λ and μ. 

D. Neural Network PID 
The NN-PID control is a common PID control that 

employs an artificial neural network to directly adjust the 
P, I, and D constants. This control utilizes a single neuron 
structure with three inputs and one output, making it easy 
to optimize weight adjustments for improved control 
performance. The block diagram for REMUS AUV's 
NN-PID control is shown in Figure 2. The inputs for a 
neuron are 𝑥ଵ, 𝑥ଶ, and 𝑥ଷ as in (10)-(12), while P, I, and 
D are weights representing proportional, integral, and 
derivative constants. The plant control signal's input is 𝑢ሺ𝑡ሻ. The state converter calculates errors for 
proportional, integral, and derivative terms using discrete 
formulas. 

 𝑥ଵ = 𝑒ሺ𝑡ሻ (10) 

 𝑥ଶ = 𝑒ሺ𝑡ሻ − 𝑒ሺ𝑡 − 1ሻ (11) 

 𝑥ଷ = 𝑒ሺ𝑡ሻ − 2𝑒ሺ𝑡 − 1ሻ + 𝑒ሺ𝑡 − 2ሻ (12) 

The control signal is calculated using the following 
equation: 𝑒ሺ𝑡ሻ = 𝑟ሺ𝑡ሻ − 𝑦𝑡ℎ𝑒 ሺ𝑡ሻ where 𝑒ሺ𝑡ሻ is the error 
at time 𝑘, 𝑒ሺ𝑡 − 1ሻ is the error at time ሺ𝑡 − 1ሻ, and 𝑒ሺ𝑡 − 2ሻ is the error at time 𝑡 − 2. The control signal is 
calculated by (13). 𝑢ሺ𝑡ሻ = 𝑢ሺ𝑡 − 1ሻ + ቀ𝑃𝑒ሺ𝑡ሻ + 𝐼൫𝑒ሺ𝑡ሻ − 𝑒ሺ𝑡 − 1ሻ൯ +𝐷൫𝑒ሺ𝑡ሻ − 2𝑒ሺ𝑡 − 1ሻ + 𝑒ሺ𝑡 − 2ሻ൯ቁ (13) 

Using a given learning rate, the backpropagation 
algorithm optimizes the weights of the neural networks 

TABLE 2 
 AUV SPECIFICATION PARAMETERS 

Parameter Value Units Description 𝑰𝒛 3.45 𝑘𝑔. 𝑚ଶ Momen inertia at CB 𝒀𝒗ሶ  -35.5 𝑘𝑔 Added Mass 𝒀𝒓ሶ  1.93 𝑘𝑔. 𝑚𝑟𝑎𝑑  
Added Mass 𝑵𝒗ሶ  1.93 𝑘𝑔. 𝑚 Added Mass 𝑵𝒗 -3.18 𝑘𝑔 Cross-flow Drag 𝑵𝒓ሶ  -4.88 𝑘𝑔. 𝑚ଶ𝑟𝑎𝑑  
Added Mass 𝑵𝒓 -9.40 𝑘𝑔. 𝑚ଶ𝑟𝑎𝑑ଶ  

Cross-flow Drag 𝑵𝜹𝒓 -6.15 𝑘𝑔𝑟𝑎𝑑 
Fin Lift Momen 𝒀𝒗 -131 𝑘𝑔𝑚  
Cross-flow Drag 𝒀𝒓 0.632 𝑘𝑔. 𝑚𝑟𝑎𝑑ଶ  
Cross-flow Drag 𝒀𝜹𝒓 -3.18 𝑘𝑔𝑚. 𝑟𝑎𝑑 

Fin Lift Force 
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representing P, I, and D. The equation for the input 
neurons is as (14). 

𝑍 = ෍ 𝑥ሺ𝑡ሻ𝑤𝑒𝑖𝑔ℎ𝑡௡ሺ𝑡ሻଷ
௡ୀଵ  (14)= 𝑥ଵሺ𝑡ሻ𝑃ሺ𝑡ሻ + 𝑥ଶሺ𝑡ሻ𝐼ሺ𝑡ሻ + 𝑥ଷሺ𝑡ሻ𝐷ሺ𝑡ሻ 

Then bipolar sigmoid activation function uses bipolar 
sigmoid for the output of neuron as in (15). 

 𝑢ሺ𝑡ሻ = ଵି௘ష೥ଵା௘ష೥ (15) 

Backpropagation calculates the error signal (𝛿) for the 
neuron input using the chain rule law as in (16). 𝛿 = ൫𝑟ሺ𝑡ሻ − 𝑦ሺ𝑡ሻ൯൫𝑓ᇱሺ𝑍ሻ൯ 

 𝛿 = ሺ𝑟ሺ𝑡ሻ − 𝑦ሺ𝑡ሻሺ0.5ሻሺ1 + 𝑢ሺ𝑡ሻሻሺ1 − 𝑢ሺ𝑡ሻሻ  (16) 

Next, calculate the weight corrections (P, I, D) by 
inputting α (learning rate) as in (17). 

 ∆𝑃 = 𝛼𝛿𝑥ଵ; ∆𝐼 = 𝛼𝛿𝑥ଶ;∆𝐷 = 𝛼𝛿𝑥ଷ (17) 

And then updating new P, I and D as in (18)-(20). 

 𝑃௡௘௪ = 𝑃௢௟ௗ + ∆𝑃 (18) 

 𝐼௡௘௪ = 𝐼௢௟ௗ + ∆𝐼 (19) 

 𝐷௡௘௪ = 𝐷௢௟ௗ + ∆𝐷 (20) 

For the proposed control architecture as in Figure 2. The 
control architecture implements PID, FOPID, and NN-
PID to compare the effectiveness of steering control for 
a heading problem.  

E. Simulation Setup 
The study will utilize rudder deflection input in the 

time domain. It will comprehensively evaluate and 
compare the control system parameters response, 
including Rise Time, Settling Time, Settling Min, 
Settling Max, Overshoot, Peak, and Peak Time, for each 
controller response. To thoroughly assess the system 
performance using various control techniques, this study 
will employ the heading angle input without modifying 
the surge, sway, and heave velocities. Three specific 
scenarios are included in the testing procedure: system 

response to step inputs, system response to trajectory, and 
system response to step inputs with disturbances. This 
methodology allows for a meticulous evaluation, which 
is crucial for arriving at informed decisions on the most 
appropriate controller for yaw angle applications about 
control systems engineering. Additionally, error analysis 
is conducted for each control strategy utilizing the root 
mean square error (RMSE) technique to assert with 
confidence that a model with a lower RMSE indicates 
better accuracy performance for the controller, enabling 
users to select the appropriate control strategy. 

III. RESULT AND DISCUSSION 
This study evaluated the effectiveness of various 

steering control methods, including PID, FOPID, and 
NN-PID, using an extensive analysis that involved 
measuring rudder deflection input and steady-state error 
to determine the dynamic behavior of control systems. 
We determined the dynamic traits of our system by 
assessing its response in the time domain, paying close 
attention to response factors such as rise time, overshoot, 
settling time, and steady-state error, as they are critical in 
defining the dynamic behavior of control systems. 

Three parameters  𝑘௣, 𝑘௜, and 𝑘ௗ have been adjusted 
using the Ziegler-Nichols method for the design of the 
PID controller. The parameter values for these three 
parameters are as follows: 𝑘௣ = 2.1039, 𝑘௜ = 0.3627, 
and 𝑘ௗ = 1.4506. For FOPID, the tuning of μ and λ 
parameters is based on the results obtained in the form of 𝜆 = 1.3 and 𝜇 = 1.2, respectively. Regarding NN-PID, 
the weight values for 𝑘௣, 𝑘௜, and 𝑘ௗwere initialized 
randomly. However, these values would be fine-tuned 
directly to reduce the error rate. The learning rate for this 
system is set to 0.01. 

A. System Response to Step 
 During the simulation with a step input, the set point 

was set to 1 radian. The rise time response outcomes of 
the PID and FOPID controllers were 0.7136 and 0.4725 
seconds, respectively. The settling time results indicated 
that the PID response was slower than that of the FOPID 
controller, with each controller taking 4.0698 and 3.2218 
seconds, respectively. Meanwhile, the response of the 
NN-PID controller is slower than that of the two previous 
controllers, with a rise time of 2.1953 seconds and a 
settling time of 12.2227 seconds. This delay is attributed 
to the required learning time for the NN-PID controller. 
A comprehensive data presentation is available in Table 
3. 

The graph in Figures 3(a) and 3(b) depicting the 
controller's response provides a visual representation of 

’ 

Figure 2. AUV steering control method. 

TABLE 3 
CONTROLLER STEP RESPONSE 

Parameters FOPID NN-PID PID 
Rise Time (sec) 0.7136 2.1953 0.4725
Settling Time (sec) 3.2218 12.2227 4.0698
Settling Min (rad) 0.9099 0.8776 0.928
Settling Max (rad) 1.046 1.0029 1.0447
Overshoot (%) 4.4485 0.3022 4.4658
Peak (rad) 1.046 1.0029 1.0447
Peak Time (sec) 1.8214 4.5502 0.9284
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the system's behavior. Based on the simulation response 
of three controllers, NN-PID outperforms PID and 
FOPID in terms of overshot values. NN-PID only 
produces an overshot of 0.3022% while PID has a higher 
percentage of 4.4658% and FOPID has 4.4485%. 

B. System Response to Trajectory 
To further evaluate the effectiveness of each control 

method, trajectory testing was conducted. The reference 
is initially set to 0 radians for the first 20 seconds, then 
increases to 0.4 radians from the 20th second to the 45th 
second. From 45 to 75 seconds, it's reduced to 0.3 
radians, and then decreases by 0.2 radians after the 75th 
second until the end of the simulation. The controller's 
response is visible in Figures 4(a) and 4(b). 

The NN-PID control consistently generates slower 
responses than the other two, with PID and FOPID 
showing equal speed. This is due to the NN-PID control 
requiring a learning process to adjust the weight of the 
PID constant. This is due to the NN-PID control requiring 
a learning process to adjust the weight of the PID 
constant. Regarding overshot, PID and FOPID produce 
higher values than NN-PID. This is due to the NN-PID 
control requiring a learning process to adjust the weight 
of the PID constant. In contrast, NN-PID causes more 
undershoots than the other two. 

C. System Response with Disturbance 
The controller's robustness is tested by introducing 

disturbances into the system. Initially, the system is given 
a 1 rad reference, and once reaching a steady state, a 0.1 
rad disturbance is added to the output between the 15th 
and 30th seconds. Figure 5(a) exhibits the control 
response under disturbance, while Figure 5(b) portrays 

the reference error. All control methods effectively 
manage disturbances by returning the response to the 
reference value. However, NN-PID control operates at a 
slower pace than other methods discussed previously.   

(a) 

(b) 
Figure 3. (a) Step response; (b) Step response RMSE.  

(a) 

(b) 
Figure 4. (a) Trajectory response; (b) Trajectory response RMSE. 

(a) 

(b) 

Figure 5. (a) Response to disturbances; (b) RMSE for response to 
disturbances. 
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IV. ROOT MEAN SQUARE ERROR (RMSE) 
Table 4 presents a comparison of errors generated 

from all testing scenarios. FOPID has an advantage in 
this regard. The step test and trajectory produce RMSE 
of 0.3211 and 0.7427, respectively. FOPID robustness to 
disturbances produces an RMSE of 0.2403. The RMSE 
produced by PID control is not significantly different 
from FOPID, with each producing RMSEs of 0.3309, 
0.7440, and 0.2476 for the three test scenarios, 
respectively. Meanwhile, due to the online learning 
process, the RMSE of NN-PID is consistently higher, 
with values of 0.5143, 0.7827, and 0.3842 for the step 
response, trajectory, and testing with disturbances, 
respectively. 

V. CONCLUSION 
PID, FOPID, and NN-PID have been employed as 

control methods for steering the Remus AUV. Each 
technique performs well, but FOPID achieves the fastest 
response time, followed by PID. In contrast, NN-PID 
results in a slower response time due to its online learning 
process. Consequently, the error generated by NN-PID is 
greater than that of PID and FOPID. Nevertheless, NN-
PID can reduce overshoots more effectively than the 
other two methods. In comparison, FOPID improves 
settling time and produces the smallest error by adding 
parameters λ and μ, proven to enhance control 
performance beyond that of PID controllers and NN-PID. 
Future research will test each control method's 
robustness, particularly NN-PID with its online learning 
concept, across varied scenarios.  
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