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Abstract 

This paper discusses the efficient use of photovoltaic energy in areas with low solar irradiation. To extract the maximum 

power at low irradiation, we used a maximum power point tracking (MPPT) algorithm based on the combination of fuzzy logic 

(FL) and the sliding mode (SM) associated with a Proportional-Integral (PI) regulator. The system parameters are calculated using 

the particle swarm optimization (PSO) technique, which thus ensures the stability of the controller. The performance of the 

proposed technique is compared with the conventional perturb and observe (P&O) technique in terms of tracking time and tracking 

efficiency at low irradiation. The simulation results prove that the technique has high tracking efficiency and less convergence time 

under low irradiation, with fewer power oscillations, low ripple and no overshoot.   
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I. INTRODUCTION 

Abbreviations 
Voc: Open-circuit voltage (V) 

Tr:  Reference temperature of the cell (K) 

T:  Temperature of the cell (K) 

𝑞: Charge of the electrons (1.6 × 10−19C) 

A:    diode ideality factor 

𝐸𝑔 = 1.12[eV]: Band gap energy of the semiconductor 

(monocrystalline silicon)[1]  used in the PV cell 

E: Solar irradiation (W/m2) 

I0:  Inverse saturation current (A) 

I0r:  Inverse saturation current at Tr (A) 

I:  Current of the PV module (A) 

Ir:  Photo-current (A) 

Iscr:   Cell’s short-circuit current at the reference irradiation and 

temperature (A) 

𝐾 Boltzmann’s constant (1.3805 × 10−23J/K) 

Ki:  short-circuit temperature coefficient 

Ns:   Number of series connected cells 

Np:   number of parallel connected cells 

      Presently, merely about 18% of the global energy 

demand is fulfilled by renewable energy sources. 

Nevertheless, there exists substantial potential to enhance 

their contribution. Indeed, it has been approximated that 

the technical capacity of renewable energy surpasses the 

current global primary energy demand by more than 18 

times [1], [2]. Among these energy sources, solar 

photovoltaic (PV) is of great interest. Nevertheless, a 

drawback of photovoltaic (PV) systems is their limited 

efficiency in converting solar energy into electrical 

energy. The energy output is significantly impacted by 

environmental factors, including solar radiation and 

temperature. Most of the literature on maximum power 

point tracking (MPPT) does not address its operation in 

low irradiation. The MPPTs developed so far have not 

been studied under permanently low radiation conditions. 

Most have taken into account the standard laboratory 

condition of 1000 W/m2.  

In reality, the irradiation of 1000 W/m2 is not always 

reached continuously in real-time. Researchers have 

developed various MPPT methods to enhance the 

system's efficiency and ensure it operates at the 

maximum power point of the photovoltaic (PV) module. 

The conventional MPPT perturb and observe (P&O) and 

increment conductance (INC) [3], [4] offer several 

advantages, including simplicity, low cost, easy 

implementation, and requiring fewer parameter 

measurements [5]. However, they face challenges in 

locating the maximum power point (MPP) under rapidly 

changing environmental conditions, with issues related to 

low convergence and oscillation of the output voltage.  
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These limitations are overcome by soft computing 

MPPT, which comprises numerical computing and 

optimization, segmentation, and artificial intelligence-

based methods such as the grey wolf algorithm [6], the 

Jaya algorithm[7], the genetic algorithm [8], the ant-

colony optimization [9], neural networks (ANN), and 

fuzzy logic (FLC) [10]. These methods have 

demonstrated rapid convergence and superior 

performance across diverse environmental conditions 

compared to their conventional counterparts [3], [11]. 

Unfortunately, conventional MPPTs and soft computing 

MPPTs have not been studied in conditions of low 

permanent solar irradiation. Therefore, this article 

presents a hybrid MPPT that works optimally in 

conditions of low irradiation. Sliding mode control 

(SMC) has garnered significant attention owing to its 

benefits, including assured stability, resilience against 

parameter fluctuations, rapid dynamic response, and ease 

of implementation. This approach combines artificial 

intelligence with robustness to deliver optimal 

performance [12]. In this method, fuzzy logic is 

employed to generate the reference voltage at maximum 

power. Subsequently, sliding mode control (SMC) is 

utilized to minimize the error between the voltages of the 

photovoltaic generator and generate the precise duty 

cycle for the DC-DC converter, ensuring the generator 

operates at its maximum power. The gain parameters are 

optimized by particle swarm optimization (PSO) to 

ensure system stability and reduce oscillation. The 

application of the PSO technique to adjust the parameters 

of the SMC-PI controller enhances the response by 

ensuring stability and minimizing oscillations, all 

without the need for intricate mathematical analysis. The 

rest of this work is organized as follows: Section 2 

outlines the suggested procedure, and the diverse 

outcomes are detailed in Part 3 Section 2. Section 3 

concludes the discussion. 

II. MATERIALS AND METHODS 

A. Materials 

1) Modelling and control of the photovoltaic system 

The entire PV system with the MPPT controller is 

developed within the Matlab/SIMULINK environment. 

The simulated PV system is depicted in Figure 3. Figure 

1 comprises a PV generator, an MPPT containing a boost 

converter, an MPPT control unit, and a direct current 

(DC) load. 

B. Characteristics of PV Array  

1) Model of PV panel   

The photovoltaic (PV) module employs the single-

diode model. The PV cell modeling utilizes the one-diode 

equivalent circuit illustrated in Figure 2[13][14].  

The PV cell model comprises a current source, two 

resistors, and a diode, as illustrated in Figure 2. The series 

resistance Rs is disregarded due to its very low value, and 

the parallel resistance RP is also omitted due to its high 

resistance. Neglecting these two parameters simplifies 

the modeling process without compromising accuracy 

[15]. Equations (1)–(5) give the mathematical model of 

the photovoltaic cell [16] ] –[19]: 

𝐼 = 𝑁𝑝𝐼 − 𝑁𝑝𝐼𝑑 [𝑒
(

𝑞𝑉

𝑁𝑠𝐴𝐾𝑇
)

− 1]              (1)                                      

The inverse saturation current I0 is: 

 

𝐼0 = 𝐼0𝑟 (
𝑇

𝑇𝑟
)

3

𝑒
(

𝑞𝐸𝑔

𝐾𝐴
(

1

𝑇𝑟
−

1

𝑇
))

                (2) 

                                            

The inverse saturation current at Tr is 

 

𝐼0𝑟 =
𝐼𝑠𝑐𝑟

𝑒
(

𝑞𝑉𝑜𝑐
𝑁𝑠𝐴𝐾𝑇)

−1

                             (3)       

Generated photocurrent is                                               

𝐼𝑟 = [𝐼𝑠𝑐𝑟 + (𝐾𝑖(𝑇 − 𝑇𝑟))]
𝐸

1000
               (4)      

                            

The PV module power (Ppv) can therefore be 

obtained as follows: 

𝑃𝑝𝑣 = 𝐼𝑉 = 𝑁𝑝𝐼𝑟𝑉 − 𝑁𝑝𝐼0𝑉 [𝑒
(

𝑞𝑉

𝑁𝑠𝐴𝐾𝑇
)

− 1]        (5)                      

                  

Figure 3 demonstrates the impact of irradiation on 

the power-voltage (P-V) curves. Hence, employing a 

control command to track the maximum power of the 

photovoltaic generators becomes essential. In this study, 

the MSX-60.5 panel is used. Table 1 presents the 

specifications of the studied PV System.  

2) DC-DC Converter 

The dynamic equations of the boost converter of the 

Figure 4 are determined using (6) [12]. 

 

                        {

𝑑𝑖𝐿

𝑑𝑡
=

𝑉𝑒−𝑉𝑆

𝐿
−

𝑉𝑆

𝐿
𝑢

𝑑𝑉𝑆

𝑑𝑡
= −

𝑉𝑆

𝑅𝐶
+

𝑖𝐿

𝐶
−

𝑖𝐿

𝐶
𝑢

                      (6) 

 

 
 

Figure 1.The complete PV system with the MPPT control 

unit. 

 
Figure 2. PV cell equivalent circuit. 
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C.  Methods 

1) Proposed control 

The control scheme employs a dual control loop 

concept: fuzzy logic is used to generate the voltage 

reference, and SMC is applied to generate the duty cycle 

d for the boost converter. SMC guides the system's state 

trajectory towards the sliding surface, where appropriate 

switching logic induces oscillations on both sides until 

convergence towards the equilibrium point situated on 

this surface. 

2)  Definition of the Sliding Surface 

      The sliding surface is established according to the 

control objectives of the system [20]. These objectives 

are designed to minimize the error between the measured 

variable and the reference to zero. The sliding surface is 

characterized by the voltage error (ev) and the current 

error (ei): 

 

𝑒𝑣 = 𝑣𝑝𝑣−𝑣𝑝𝑣,𝑟𝑒𝑓                         (7)                                                  

𝑒𝑖 = 𝑖𝐿,𝑟𝑒𝑓𝑖𝐿
                               (8)       

                                               

     By incorporating the derivatives of the errors defined 

in (7) and (8), we improve the dynamic response of the 

controller, thereby obtaining the set of sliding surfaces S 

as indicated in (9). 

 

𝑆 = [
𝑠1

𝑠2
] = [

𝑒𝑣 + 𝑘𝑣
𝑑𝑒𝑣

𝑑𝑡

𝑒𝑖 + 𝑘𝑖
𝑑𝑒𝑖

𝑑𝑡

]                      (9) 

                                       

      The constants kv and ki are determined according to 

the desired system dynamics. The choice of these gains 

is crucial; too small gains cause a very long response 

time, and too large gains generate strong oscillations at 

the control unit level. These oscillations can excite 

neglected dynamics (chattering phenomenon) or even 

deteriorate the control unit [21]. The use of the sign 

function in the control law ensures that the error 

converges asymptotically towards zero. However, this 

discontinuous function causes the problem of reticence. 

To address this issue, we apply the boundary layer 

solution, which involves performing a continuous 

approximation of the discontinuities present in the 

control law in the vicinity of the sliding surface [15]. The 

sign function is approximated by the hyperbolic tangent 

function. To reduce the effect of this phenomenon, we 

propose replacing the sign function with another function 

called a hyperbolic tangent. The control laws for the two 

control loops correspond to (10) and (11) [22]. 

 

           𝑖𝐿𝑟𝑒𝑓 = (𝑘𝑝𝑣 +
𝑘𝑖𝑣

𝑠
) 𝑡𝑎𝑛ℎ(𝑆1)               (10)                                                    

           𝑑 = (𝑘𝑝𝑐 +
𝑘𝑖𝑐

𝑠
) 𝑡𝑎𝑛ℎ(𝑆2)                     (11)       

                                       

Where 𝑘𝑝𝑣,𝑘𝑖𝑣 , 𝑘𝑝𝑐 and 𝑘𝑖𝑐 are the gains of an integral 

proportional controller (PI), 𝑆1 and 𝑆2 are presented in 

(9). 

3) Design of fuzzy logic (FLC)  

      Fuzzy logic control provides the advantage of being 

a robust control method that does not demand precise 

knowledge of the mathematical model of the system. 

Therefore, it is better suited for non-linear systems. This 

algorithm operates in three blocks, as shown in Figure 5: 

fuzzification, inference, and defuzzification. 

Fuzzification converts physical input variables into fuzzy 

sets. The input variables corresponding to the E error and 

the variation of the CE error are defined using (12) and 

(13). 

                                                           

 

 

 

TABLE 1 

SPECIFICATIONS OF PV SYSTEM 

Parameter Name Value 

Pmax Maximum power 1200 W 

Vmpp Optimum operating voltage 170.1 V 

Impp Optimum operating current 7.6 A 

Voc Open circuit voltage 210.1- V 

Isc Short-circuit current 7.8 A 

 

(a) 

 
(b) 

Figure 3. Influence of low irradiation on the (a) P-V and (b) I-V 

curves. 

 
Figure 4. Boost converter. 
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  𝐸 =
𝑃(𝑘)−𝑃(𝑘−1)

𝐼(𝑘)−𝐼(𝑘−1)
                              (12)                                                     

                                                           

  𝐶𝐸 = 𝐸(𝑘) − 𝐸(𝑘 − 1)                     (13)  

                                     

In our case, the inputs of the fuzzy controller are the 

variation of the power (ΔPpv) and the variation of the 

voltage (ΔVpv) of the PV generator. The output 

corresponds to the reference voltage variation (ΔVref), as 

shown in Figure 6. The following linguistic variables are 

therefore assigned to these quantities: PL (Positive 

Large), PM (Positive Medium), PS (Positive Small), Z 

(Zero), NS (Negative Small), NM (Negative Medium) 

and NL (Negative Large).  

In the inference stage, decisions are made by 

establishing logical relationships between the inputs and 

the output while defining the membership rules. The 

inference rules are then formulated in Table 2. Finally, 

during the defuzzification process, the fuzzy output 

subsets are converted into numerical values. Figure 7 is 

the surface representation of the membership functions 

for the fuzzy model.  

4) Particle swarm optimization algorithm 

       The PSO (particle swarm optimization) algorithm 

was initially developed by Kennedy and R. Eberhart [23]. 

It is an iterative algorithm belonging to the category of 

evolutionary stochastic methods with rapid convergence. 

Numerous applications of this algorithm in various fields, 

particularly in engineering, have demonstrated its 

superiority over other stochastic methods such as ant 

colony optimization, biogeography, and genetic 

algorithms. At each computational step, individual 

values are compared based on the objective function, and 

new guides are selected. During its execution, the 

algorithm proceeds through the steps outlined in the 

flowchart depicted in Figure 8. The position and velocity 

of each particle are updated using (14).  

        {
𝑉𝑖+1 = 𝛾1𝑉𝑖 + 𝛾2(𝑥𝑖𝑝 − 𝑥𝑖) + 𝛾𝑃(𝑥𝑔 − 𝑥𝑖)

𝑥𝑖+1 = 𝑥𝑖 + 𝑉𝑖+1

      (14)                                  

With 𝛾1, 𝛾2, 𝛾𝑝 ∈ [0 1]. 𝑥𝑖𝑝  𝑒𝑡 𝑥𝑔  , respectively, 

represent the best position of the ith particle from the first 

iteration and the best global position of the entire swarm. 

𝑉𝑖 is the velocity of each particle. 

The PSO optimization algorithm's task is to calculate 

the gain K1, K2, K3 for fuzzy logic, kv, ki for sliding mode, 

and kpv, kiv, kpc, and kic for two PI that minimize the 

criterion J from iteration to iteration. In total, nine 

variables must be set for each control loop. As a result, 

we have nine objective functions, each of which is the 

minimization of the absolute integral of the error 

determined by (15).  

 

                            𝐽𝐼𝑇𝐴𝐸 = ∫ |𝑒𝑠|𝑡𝑑𝑡
𝑡𝑠𝑖𝑚𝑢𝑙

0
                    (15)     

     Where tsimul is the simulation time and se  is the error 

between a reference state and its measurement. In order 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6. Membership functions for the fuzzy model (a) input 

ΔPpv, (b) Input ΔVpv (c) output ΔVref. 

TABLE 2 
RULE BASE FOR THE FUZZY MODEL 

∆Vpv 
∆Ppv 

NL NM NS Z PS PM PL 

NL PL PL PL PL NM Z Z 

NM PL PL PL PM PS Z Z 

NS PL PM PS PS PS Z Z 

Z PL PM PS Z NS NM NL 

PS Z Z NM NS NS NM NL 

PM Z Z NS NM NL NL NL 

PL Z Z NM NL NL NL NL 

 

 
Figure 7. Rules of fuzzy logic on the surface. 

 

 
Figure 5. Block diagram of the FLC. 
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to avoid the use of multi-objective optimization 

techniques, the formulation of a single objective function 

is carried out using the weighting method. Equation (16) 

formulate the global objective function. 

 

 

              𝐽 = ∑ 𝛼𝑖𝐽𝑖
9
𝑖=1                              (16) 

                                          

With:  

  𝛼1 + 𝛼2 + 𝛼3+  𝛼4 + 𝛼5 + 𝛼6+  𝛼7 + 𝛼8 + 𝛼9 = 1 . 

Indeed, at each iteration, the algorithm seeks a better 

compromise between the different gains in order to 

minimize the objective function. Figure 9 shows the 

small variation of the objective function. 

The selection of these parameters directly impacts 

the controller's performance. Properly configuring these 

variables leads to a stable and robust response. In this 

article, the PSO is employed to compute these 

parameters. 

Figure 10 shows the overall system, which is divided 

into four blocks, namely the three-block control and the 

DC-DC converter block. The PSO algorithm is utilized 

in all control blocks to compute optimal gains. 

III. RESULTS AND DISCUSSION 

      The gains obtained by applying the PSO algorithm 

are provided in Table 3. The tests involve simulations of 

hard, medium, and soft insolation variations, increasing 

and decreasing, under low irradiation conditions. Two 

specific cases were taken into account for the tests; they 

are hard variation involves rapid and substantial 

insolation changes (400 W/m²) with abrupt transitions, 

and the other one is middle variation, this scenario 

features rapid and moderate insolation changes (100 

W/m²) with sharp transitions. 

According to Figure 11, for low irradiations, i.e., 

from 100 W/m2 to 400W/m2 at varied temperatures 

(between 20 °C and 40 °C), the proposed algorithm 

registers excellent performance in terms of monitoring 

and transient response. No overshoot is observed during 

the variation of the sunshine for the proposed Fuzzy-

SMC algorithm. The proposed MPPT algorithm 

demonstrates a substantial improvement in terms of 

response time, particularly during periods of rapidly 

 
Figure 8. flowchart of the PSO algorithm. 

 

Start 

Initialization of the particles and 

their speeds 

 

Determination of the best value of 

every particle and the one global 

  

End 

Catch-up of optimal 

values 

 

Assessment of the particles in 

relation to the objective function 

Criteria 

of stop ? 

Update of position and speed of 

every particle 

  

 
Figure 9. Evolution of the objective function. 

 

 
Figure 10. Block diagram of the system. 
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changing atmospheric conditions. Specifically, it 

achieves a response time of 26 ms, whereas the P&O 

method requires 76 ms. Additionally, the proposed 

algorithm exhibits excellent performance in a steady 

state, with no ripple or oscillation around the MPP, a 

feature lacking in the conventional P&O algorithm, 

which shows fluctuations between 0.3 and 1 W. 

Furthermore, referring to Figure 11, it is observed 

that the temperature does not significantly impact the 

power output as long as it remains within an acceptable 

range for an irradiance of 400 W/m². 

By comparing the values in Table 4 with the 

characteristics in Figure 3, we also confirm that our 

algorithm displays a better yield in terms of attainment of 

the MPPT point. For example, for a low irradiation value 

equal to 400 W/m2, the corresponding MPP is 497.4 W. 

Our algorithm reaches 274.2 W against 229.2 W for 

P&O, a gain in power of 45 W, which proves the 

superiority of our algorithm in low irradiation. Our 

algorithm is, therefore, better suited for regions with low 

irradiation. 

Figure 12 presents simulation results of the system 

for constant irradiation of 800 W/m², with temperature 

varying in increasing time, i.e., 25 °C in the interval [0; 

0.2], 45 °C in the interval [0.2; 0.3], and then decreasing, 

i.e., 40 °C in the interval [0.3; 0.4], 35 °C in the interval 

[0.4; 0.6], 30 °C in the interval [0.6; 0.8], and finally 20 

°C in the interval [0.8; 1]. It is evident to note that when 

irradiation reaches 800 W/m², temperature variations 

significantly influence the power. We immediately 

observe that when the temperature rises to 45 °C, the 

output power of the fuzzy-SMC system decreases 

significantly, although it remains higher than that of the 

P&O system. Similarly, when the temperature decreases 

to its lowest level, i.e., 20 °C, the power of the fuzzy-

SMC system increases considerably. Whether the 

temperature increases or decreases, the developed system 

remains effective for low irradiance levels compared to 

the P&O system. 

In Figure 13, the change in solar irradiance is 

assumed to follow a trapezoidal pattern with a 

temperature variation between 20 °C and 45 °C to 

validate the proper functioning of the proposed method. 

It should be noted, however, that 800 W/m² is the 

permanently permissible irradiation value in thesizing of 

the solar system. We observe that the output power 

TABLE 3 
VALUE OF GAINS 

Parameter Value of Gains 

𝑲𝟏 41.66 

𝑲𝟐 33.99 

𝑲𝟑 24.02 

𝒌𝒗 151.04 

𝒌𝒊 863.37 

𝒌𝒑𝒗 18.97 

𝒌𝒊𝒗 55.34 

𝒌𝒑𝒄 50.34 

𝒌𝒊𝒄 21.15 

 

 
 

Figure 11. The output power under low irradiation and variable temperature. 

TABLE 4 

RESULTS COMPARISON 

Irradiation 
MPP 

(w) 

Max Power 

(w) 
Ripple (w) 

P&O 
fuzzy-

SMC 
P&O 

fuzzy-

SMC 

400 W/m2 497.4 229.2 274.2 0.3 NO 

350 W/m2 435.2 174.5 211 1 NO 

250 W/m2 310.1 89.9 108.8 0.6 NO 

200 W/m2 247.2 57.7 69.983 0.3 NO 

100 W/m2 121.5 14.5 17.67 0.1 NO 
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evolves normally and is not affected by the temperature 

variation.   

Figures 11, 12, and 13 illustrate the outcomes 

achieved through the proposed algorithm, juxtaposed 

with those obtained using the P&O algorithm. Based on 

these results, it can be deduced that the proposed fuzzy-

SMC algorithm displays a notable enhancement in 

tracking the Maximum Power Point (MPP) during 

periods of low solar irradiation. In contrast to the 

traditional (P&O) algorithm, the proposed fuzzy-SMC 

approach effectively minimizes oscillations around the 

maximum power and precisely tracks the MPP. This 

precision directly influences energy conservation, 

mitigating energy loss. Figure 11 demonstrates that the 

designed system remains robust against temperature 

variations as long as the irradiation does not exceed 400 

W/m². Figure 12 shows that when the irradiation 

increases to 800 W/m², the effect of temperature 

variation, exceeding 35°C becomes noticeable. However, 

it is noteworthy that when the temperature drops below 

25 °C, the power gain increases significantly, 

representing a considerable advantage over the P&O 

method. This demonstrates that the system responds 

effectively to temperature variations. 

  Based on the test results, it can be concluded that 

the key contributions of the proposed Fuzzy-SMC 

algorithm include the reduction of ripple and elimination 

of overshoot, improved response time, and its ability to 

operate effectively under low irradiation, particularly in 

swiftly changing environmental conditions. These 

enhancements lead to an overall reduction in energy 

losses. Table 5 provides a comparison of two MPPT 

algorithms for the considered scenario. 

IV. CONCLUSION 

    In this study, the MPPT technique was developed 

to improve the control of photovoltaic systems in case of 

low irradiation. This command takes into account 

random changes in atmospheric conditions in regions 

with low irradiation. The simulation results 

unequivocally showcased the efficacy of this approach, 

highlighting its performance in terms of response speed, 

robustness, and accuracy in tracking the MPP under 

variable and non-uniform low irradiation weather 

conditions. Indeed, for different levels of low irradiation, 

the system showed superior performance with energy 

savings of up to 70 W, which is significant, with an 

increased speed of up to 0.026 s. 

TABLE 5 

 RESULTS COMPARISON 

Algorithm P&O Fuzzy-SMC 

Tracking Speed  0.76s 0.026s 

Extracted Energy Efficiency in 

low irradiation (%) 800w/m2 
89.08 94.89 

Steady State oscillation (% of 

power) 
High Less 

Accuracy Low Highest 

Complexity Easy Medium 

 

 
Figure 12. The output power under low constant irradiation (800 

W/m²) and variable temperature. 

 
 

Figure 13. The power obtained by the suggested algorithm using the trapezoidal form of solar irradiation with variable temperature. 
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