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Abstract 

Bacterial identification is an essential task in medical disciplines and food hygiene. The characteristics of bacteria can be 

examined under a microscope using culture techniques. However, traditional clinical laboratory culture methods require 

considerable work, primarily physical and manual effort. An automated process using deep learning technology has been widely 

used for increasing accuracy and decreasing working costs. In this paper, our research evaluates different types of existing deep 

CNN models for bacterial contamination classification when low-resource data are used. They are baseline CNN, GCNN, ResNet, 

and VGGNet. The performance of CNN models was also compared with the traditional machine learning method, including 

SIFT+SVM. The performance of the DIBaS dataset and our own collected dataset have been evaluated. The results show that 

VGGNet achieves the highest accuracy. In addition, data augmentation was performed to inflate the dataset. After fitting the model 

with augmented data, the results show that the accuracy increases significantly. This improvement is consistent in all models and 

both datasets. 
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I. INTRODUCTION 

Bacteria are living microorganisms that are not 

visible to the naked eye but can be observed under a 

microscope. While some bacteria benefit our ecosystem, 

they can also become a carrier of diseases to humans, 

including infectious ones. It is, therefore, essential to 

provide accurate identification of living bacteria for a 

wide range of applications, including clinical diagnosis 

[1], [2], food production [3], and water quality 

assessment [4], [5]. The characteristics of bacteria can be 

examined under a microscope using culture techniques. 

However, traditional clinical laboratory culture methods 

require considerable work, primarily physical and 

manual effort. The recognition and counting of bacteria 

colonies are mainly performed by the expert. Moreover, 

some bacteria species belong to the same morphology, 

making identifying them more difficult. To cope with 

these problems, an automated identification and 

classification process can be developed. Machine 

learning (ML) assisted image processing has been 

comprehensively used to reduce the workload and 

improve performance accuracy. Specifically, deep 

learning (DL) as a subset of ML has achieved incredible 

success in a number of biomedical applications [6], [7]. 

Deep learning approaches are able to learn features 

from large datasets to reach human-level performance. 

Recently, many studies have been developing an 

automated system using DL that can assist biologists and 

related researchers in recognizing microscopic images in 

large-scale applications, not only bacteria identification 

but also other living microorganisms. In [8], they 

provided a systematic review of various ML methods 

applied for image recognition of four types of 

microorganisms such as bacteria, algae [9], protozoa 

[10], and fungi [11], [12]. Other than that, [13] provided 

a comprehensive survey of digital image processing 

methods for microorganism counting. The study 

concluded that there is an urgent need for the automation 

of bacteria colony detection with high accuracy and 

acceleration. Most studies usually work with an adequate 

number of images. However, collecting bacterial data is 

labor-intensive and error-prone.  

To provide a highly accurate system, this paper 

presents a deep structure convolutional neural network 

(CNN) for bacteria classification when low resource data 

have occurred. The utilization of CNN was performed 

because it has become state-of-the-art for many object 

detection and classification tasks. The first step in 

performing our methods was to design a standard CNN 

architecture with three convolutional layers as a baseline. 

In the next step, the baseline results were compared with 

gated CNN and two popular pre-trained models based on 
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CNN, ResNet, and VGGNet. Not only that, the results 

also had been compared to SVM classifier to evaluate 

with a traditional ML method. The remainder of the paper 

is organized as follows. Section 2 presents related works 

on bacteria classification and feature extraction. Section 

3 explains all the architectures used in this study. 

Sections 4 and 5 describe our experiment's configuration 

and dataset. Section 6 shows the results and discussion, 

the summary of this paper will be concluded in the last 

part. 

II. RELATED WORKS 

A. Bacteria Classification 

In microbiology, researchers have applied various 

types of machine learning (ML) techniques to recognize 

microscopic images from laboratory samples. There have 

been many works implementing statistical methods [14], 

artificial neural networks (ANN) [15], and other 

classifiers [16] to differentiate bacteria species. Among 

them, deep learning, which is a part of ML methods based 

on ANN has yielded impressive results on image 

processing tasks. Several studies have already been done 

for the recognition of bacteria species using deep neural 

networks (DNN) [17] and convolution neural networks 

(CNN) [18], [19]. CNN has recently become one of the 

most effective yet efficient DL techniques where limited 

data occurs. Compared to other DL networks, CNN 

works well on a relatively small amount of data. 

In [16], they proposed an automatic detection of 

tuberculosis bacteria in sputum smear images. The 

approach involved image segmentation using the 

threshold method. The segmented regions were used to 

extract features like shape, granularity, and color. Then, 

classification was performed using fuzzy membership 

functions to predict the presence of bacteria. In [20], they 

classified tuberculosis bacteria into three classes, non-

TB, overlapped-TB, and TB, using image segmentation 

and hybrid multilayer perceptron (MLP). The other work, 

presented in [17], developed an early detection system of 

bacterial growth in the form of microscopy images 

captured inside an agar plate. Then, classification was 

employed using DNN. The system performance was 

indicated by the detection of Escherichia coli and total 

coliform bacteria (i.e., Klebsiella aerogenes and 

Klebsiella pneumoniae subsp. pneumoniae) in water 

samples. A study in [18] implemented CNN for the 

classification and counting of bacteria colonies. The 

CNN-based classifier was designed for cardinality 

recognition and outlier rejection. The method was 

experimentally tested in a real clinical scenario, that is 

bacteria colonies were extracted from repetitive clinical 

laboratory culture plates. Moreover, [19] applied a three-

dimensional CNN for classifying objects in three-

dimensional microscopy images of larval zebrafish 

intestines as bacteria or non-bacteria. Conventional 

methods such as random forest and support vector 

machine (SVM) were also performed as a comparison. 

The results showed that CNN outperformed both 

methods. 

B. Features 

The species of bacteria are identified based on their 

characteristic features. One of the essential features is the 

shape of a bacteria cell. Their basic shapes are 

cylindrical, spherical, and spiral. The second most 

important features are the shape and size of the bacteria 

colony. However, different species of bacteria could be 

in the same morphology. Thus, recognizing bacteria 

merely on its shape and size would be difficult. Several 

conventional studies [14], [21] have worked on 

additional analysis with other microbiological 

characteristics. In [14], they identified the bacteria 

species using statistical methods based on geometric 

features such as circularity, compactness, eccentricity, 

tortuosity, and length-to-width ratio. In [21], they 

identified tuberculosis bacteria using additional 

information on the average color of the images in order 

to tackle the problem of the bacteria morphology 

similarities. The other study, presented in [15], applies 

three ML-based approaches, namely 3σ, K-nearest 

neighbor (K-NN), and ANN, for bacterial cell 

classification. The approach worked by applying image 

segmentation using the global threshold method and 

extraction of geometric shape features. 

The studies mentioned earlier are mostly employed 

using conventionally trained networks to recognize 

bacteria for limited species, for instance, only one or five 

bacteria species. The approach used may identify a 

specific feature very well. However, it may not be 

capable of differentiating between species with similar 

morphology (e.g. shape and size). To recognize more 

various species in the same morphology, several studies 

have implemented DL techniques. In [22], the authors 

proposed using transfer learning-based Inception deep 

CNN structure to classify bacterial microscopic images. 

First, deep features were extracted using a pre-trained 

CNN model. The extracted features were then classified 

by applying fully-connected layers followed by a 

softmax layer. Furthermore, a study in [23] employed DL 

based approach to recognize 33 bacterial species. The 

approach involved texture feature extraction using scale-

invariant feature transform (SIFT) and deep features 

extraction using three pre-trained CNN models, namely 

AlexNet, VGG-M, and VGG-VD. In [18], they applied 

two different ML-based systems, SVM and CNN, for 

counting bacterial colonies. Handcrafted features were 

extracted using SVM, while deep features were extracted 

using CNN. The results presented that the deep learning 

approach outperformed the handcrafted feature-based 

one. In a neural network, deep features were extracted 

relevant to the model's final output by training on 

thousands of images. Image edge and contour detectors 

were learned from earlier layers. Meanwhile, the deeper 

the layers of a network can extract features for more 

complicated patterns, including textures, shapes, or 

variations of features learned earlier. DL approach can 

improve robustness for the recognition of bacteria 

species.  

III. METHODOLOGY 

In this study, the performance of some deeply 

structured convolutional neural network architectures 

was evaluated. They are standard CNN, gated CNN, 

ResNet, and VGGNet. These networks are differed based 

on the depth of the network.  To build the methods, it was 
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started by designing a simple CNN model from scratch 

to be used as the baseline. Furthermore, to improve the 

performance, the gating mechanism was added to the 

architecture of CNN, which became gated CNN. Then 

two popular pre-trained models (ResNet and VGGNet) 

were employed. These models were trained on Imagenet 

and yielded supreme results on a wide range of computer 

vision tasks. Following the principle of transfer learning, 

the convolutional layers of the pre-trained models work 

as a large feature extraction layer. The last fully 

connected layer, which acted as a classifier, is replaced 

to suit our problem, that is, to classify bacteria colony 

data and also apply the fine-tuning approach. Instead of 

using random initialization, the weights from transferred 

models as initial weights were used. Some convolutional 

layers had been frozen to be non-trainable to reduce the 

model parameters and only update the weights on the 

unfroze layers. By doing this, it greatly reduces the 

requirement of large training data and the overfitting 

problem. In addition, data augmentation had been applied 

to the dataset in order to improve the neural network 

training phase. The detailed architecture of each network 

is described in this section. 

A. Baseline Convolutional Neural Network 

As a baseline, a simple CNN model with three 

convolutional layers and two fully-connected layers was 

applied. The convolutional layer uses 11×11, 5×5, and 

3×3 convolution filters with stride 2, respectively. Batch 

normalization, ReLU activation function, and max 

pooling were applied after each convolutional layer. The 

output of the last convolution block was flattened into 

one feature vector, which became the input to a fully-

connected layer consisting of 256 hidden neurons. 

Dropouts with a rate of 0.5 were applied to the first fully-

connected layer to avoid overfitting problems. The output 

layer consists of neurons whose number corresponds to 

the bacterial classes. At the last stage, a softmax function 

was used to obtain the probability of membership for 

each class. Our CNN model architecture can be seen in 

Figure 1.  

B. Gated Convolutional Neural Network 

To improve the baseline model, a gated 

convolutional neural network (GCNN) was employed, 

which consists of convolution layers and gating 

mechanisms. The gate is used to control the information 

that flows into the succeeding layer. It helps to prevent 

the vanishing gradient problem during backpropagation 

[24]. Recently, GCNN has yielded excellent results in an 

abundance of image-processing tasks [25]. Similar to 

CNN, GCNN is also one of the most effective algorithms 

in DL techniques because it works on a relatively small 

amount of data. Compared to DNN, GCNN has a much 

smaller number of connection weights [26]. Intuitively, 

the gating mechanism performs convolution operation to 

the input in two different paths, as shown in Figure 2. 

Each path might present different information. Following 

the idea proposed in [27], instead of ReLU activation 

function, the outputs of convolutional layers are followed 

by a gated activation unit. The hidden layer after the 

gated activation unit is expressed in (1): 

  

            ℎ(𝑋) = 𝑡𝑎𝑛ℎ(𝑋 ∗ 𝑊 + 𝑏)⨂𝜎(𝑋 ∗ 𝑉 + 𝑐)          (1) 

In this equation, the input image 𝑋 ∈ 𝑅𝑀𝑥𝑁 were put into 

the network, where M and N represent the dimension of 

the feature vector of an image at each axis. Tanh(⋅) 
function produces the representations, sigmoid function 

𝜎(⋅) acts as the gates, and ⨂ is the Hadamard product 

operator. The sigmoid function manages the output of 

tanh by element-wise multiply operation, ∗ denotes the 

convolution operator. W and b are the weight matrix and 

bias respectively. V and c are the kernel weight matrix 

and bias for the linear gate. The detailed implementation 

of our GCNN is shown in Figure 2. The network has three 

gated blocks which consist of three convolutional layers 

followed by gated structures. Each layer has 11×11, 5×5, 

and 3×3 convolution filter with stride 2. After the gated 

activation unit, max pooling over a 3×3 pixel window 

with stride 2 had been applied. At the final stage, the 

output of the last gated block was flattened into one 

feature vector before passing it into softmax 

classification. 

C. ResNet 

ResNet, short for Residual Network, is one of 

popular deep structured convolutional networks that was 

developed for computer vision tasks [28]. As we know 

that, deep networks have a notorious problem of 

vanishing gradient. Model performance often gets 

saturated when the network goes deeper. Thus, residual 

networks are introduced as identity shortcut connection 

 

Figure 1. Baseline CNN architecture. 

 

Figure 2. Gated CNN architecture. 

 

Figure 3. ResNet architecture. 
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which skips one or more layers. Using ResNet, an  

excellent performance could be achieved  by training 

hundreds or thousands of layers. Here, ResNet18 had 

been implemented. ResNet18 consists of four Conv 

blocks and four Identity blocks as shown in Figure 3. At 

last, softmax layer is performed for classification 

purpose. In this study, the system applied a fine-tuning 

approach. all convolutional layers had been frozen except 

the last identity block consisting of two convolutional 

layers, and the fully-connected layers. 

D. VGGNet 

VGGNet is another variation of deep-structured 

convolutional networks proposed by the Visual 

Geometry Group (VGG) [29]. It can be applied to image 

classification. VGGNet focuses on the effect of the 

convolutional neural network depth. It uses smaller filters 

3×3 with more depth instead of having large filters 

(11×11, 5×5) as in AlexNet. Basically, VGGNet is an 

improvement over AlexNet. There are several VGGNet 

variants such as VGG11, VGG13, VGG16, and VGG19. 

Each of VGGNet variants has different configurations in 

terms of the number of layers and the size of each layer. 

In our study, VGG11 had been implemented. There are a 

total of 8 convolutional layers and 3 fully-connected 

layers in VGG11 architecture. The detailed structure is 

illustrated in Figure 4. A fine-tuning approach in the 

VGGNet structure also had been applied. the first seven 

convolutional layers and the first two fully-connected 

layers had been frozen. Thus, the model only updates the 

weights on the last convolutional layer and the last fully-

connected layer. 

E. Data Augmentation  

The bacterial colony dataset used in this study has a 

limited number of images, compared to the number of 

trainable parameters of our baseline CNN, GCNN, and 

pre-trained models. This condition caused a high 

probability of overfitting. Thus, data augmentation had 

been implemented to increase the dataset and reduce 

overfitting. The method focuses on using geometric 

transformation and Gaussian noise. Geometric 

transformation is one of the augmentation methods to 

artificially inflate the dataset by modifying the image 

position and orientation. Image transformations such as 

rotation, flipping horizontal and vertical, and the random 

crop had been applied to add more invariant examples. 

Data augmentation techniques used in this study are 

described below: 

• Rotation: The rotation scheme rotates an image by a 

specified angle θ (0 – 180°). Let x and y be the 

original position at a point (0,0) in an image. Then, �́� 

and �́� are the new position after θ rotation as shown 

by the following (2) and (3): 

�́� = 𝑐𝑜𝑠𝜃 ∗ 𝑥 + 𝑠𝑖𝑛𝜃 ∗ 𝑦 (2) 

�́� = −𝑠𝑖𝑛𝜃 ∗ 𝑥 + 𝑐𝑜𝑠𝜃 ∗ 𝑦 (3) 

 

• Reflection: The reflection scheme flips the image 

horizontally or vertically. Let x and y be the original 

image. When the image is flipped horizontally, �́� and 

�́� be the new position after flipping the image by axis 

Y as shown in (4). When the image is flipped 

vertically, x’ and y’ be the new position after flipping 

the image by axis X as shown in (5). 

 

             [
�́�
�́�
] = [

−1 0
0 1

] [
𝑥
𝑦]                           (4) 

 

             [
�́�
�́�
] = [

1 0
0 −1

] [
𝑥
𝑦]                           (5) 

 

• Crop: The crop scheme cut a part of the given image 

with a desired output size of the crop at a specific 

location. In this case, a random cropping technique on 

the original image was used. 

IV. EXPERIMENTAL SETUP 

A. Dataset 

In this experiment, the system uses two datasets 

containing images with bacterial colonies: DIBaS, in 

which the images contain 33 bacteria species, and our 

own collected data, in which the images contain 

Escherichia coli (E. coli) detected in water samples taken 

from different locations. 

1) DIBaS 

In this paper, a dataset of digital images of bacterial 

species (DIBaS) published in [5] was used which 

contains a total of 660 images. Specifically, the data 

contains images with 33 bacteria species (20 bacteria 

genera) with 20 images for each class. The dataset 

consists of colored images that were stained using 

Gramm's method with the original size of 2048×1532. 

The sample images of three bacteria species from the 

dataset are shown in Figure 5. The data was preprocessed 

by resizing the images into 224×224, the same size used 

by the pre-trained models, ResNet and VGGNet. For 

training, the dataset was split into 80% for training, 10% 

for validation, and 10% for testing. 

2) E. coli Dataset 

The image data of Escherichia coli (E. coli) bacteria 

that were detected in samples from different types of 

waters had been collected. These waters have three 

different sources, there are mineral water, sewage, and 

household water. In total, 262 images of E. coli had been 

collected which comprises three classes: one labeled as a 

non-bacterial class and two labeled as a bacterial class. 

 

Figure 4. VGGNet architecture. 

 

Figure 5. The samples images of three bacteria species from 

DIBaS dataset: (a) Escherichia coli; (b) Lactobacillus casei; (c) 
Staphylococcus aureus. 
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The non-bacterial samples were taken from mineral 

water. The other two bacterial classes are E. coli detected 

in household water and sewage. To get the datasets, water 

samples need to be prepared using different treatments 

before being tested. The preparation was including 

filtering the samples from unwanted materials and 

conditioning the water temperature.   

The prepared samples were tested using 3M 

petrifilm in each sample. 3M petrifilm is a medium used 

to determine the number of colonies of E. coli bacteria. 

The samples should be liquid material or solid material 

made into a liquid. The use of 3M petrifilm is faster and 

more practical than detecting E. coli bacteria using 

conventional cultures. Three types of samples were tested 

on 10 petrifilms for each water, so in the experiments, a 

total of 30 petrifilms were used. For the next stage, 

petrifilms were put in a room with good air circulation 

for 24 to 72 hours to develop bacteria. Figure 6 are 

examples of petrifilms (a) without E. coli bacteria and (b) 

with E. coli bacteria. 

The bacteria on petrifilm was captured using our 

mobile microscope prototype system. The system 

consists of a Raspberry Pi 4 for device processing, a 

digital microscope, an SD card, an LCD viewer, and a 

computer for backup of the data. The data can be stored 

directly on the SD Card on the Raspberry Pi or computer. 

The complete system diagram block can be seen in 

Figure 7. 

The data collection was conducted by capturing the 

image in petrifilm, which in one petrifilm it can take three 

images from three areas as shown in Figure 8. The 

captured images were processed and saved into a storage 

card for further processing step. The total amount of data 

from the petrifilm of three types of water is shown in 

Table 1. 

Figure 9 shows a few samples of our collected 

bacterial images from different types of water. The 

augmented methods and the results of all types of water 

could be seen in Figure 10. Five types of augmented 

methods had been conducted to the original data to make 

the amount of each data balanced.  

For the experiments, four types of CNN architectures 

were used to preprocess and train the data. For training, 

a learning rate of 0.001 and an Adam optimizer were 

applied. The epochs were set to 50 and the batch size set 

to 8. Cross-entropy was used as a loss function. Our 

system trains all the architectures for both DIBaS and our 

collected E. coli dataset. For the pre-trained models, the 

fine-tuning approach was applied and used pre-trained 

weights as initialization. Some layers were set to be non-

b a 

 

a 

 

c b 

 

Figure 7. Block diagram system. 

                      
(a) (b) 

Figure 6. 3M Petrifilm condition (a) without E. coli bacteria (b) 

with  E. coli bacteria. 

 

Figure 8. 3M Petrifilm capturing areas. 

 

Figure 10. Samples of collected images after various 

transformations: (a) mineral water; (b) household water; (c) 

sewage. 

TABLE 1 
LIST OF WATER CONTAINING BACTERIAL COLONIES CLASS 

LABELS WITH THE AMOUNT OF DATA FOR EACH CLASS  

Class Data 

Mineral water 30 

Household water 123 

Sewage 109 

 

 

(a)                            (b)                               (c) 

Figure 9. Samples of collected images of bacterial (a) mineral 

water; (b) household water; (c) sewage. 
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trainable to reduce the model parameters and only update 

the weights to the trainable layers. In addition, SIFT 

feature extraction was performed together with SVM 

classifier for comparison. The diagram of our research 

methods can be seen in Figure 11. The model 

performance was compared using test accuracy and 

measured the model size of the training process. All the 

CNN architectures were implemented in Python using 

Pytorch packages. The system is trained on Intel i9 

10900f, with 32GB memory size and NVidia RTX 3060 

12GB GPU. 

V. RESULTS AND DISCUSSIONS 

1) DIBaS 

The classification accuracy results from over 33 

bacteria species of DIBaS dataset were presented in Table 

2. The results showed that data augmentation 

significantly improves the accuracy of all CNN 

architecture. The best performance is achieved by 

VGGNet with an accuracy of 94.44% when training with 

original data. After fitting the model with augmented 

data, the accuracy increases significantly to 96.15%. As 

shown in Table 2, the results with data augmentation 

(DA) showed consistent improvement over all the CNN 

architectures. In the beginning, our baseline CNN model 

performed worse than SIFT+SVM without data 

augmentation. This might be caused by the small number 

of images in each class. With DA, the accuracy increases 

drastically and becomes comparable to GCNN. The 

number of parameters of ResNet and VGGNet had been 

reduced to adapt to our task with a small-size dataset. 

Their parameters have been reduced to 4.73 and 2.49 

million respectively. This results in a shorter training 

time per epoch and reduce overfitting compared to using 

the original models. 

The results of training four types of CNN 

architectures also were presented, where those were 

tested on the scalability of different numbers of classes, 

as shown in Figure 12. The results showed that accuracy 

decreases linearly with the number of classes, but it rises 

again with data augmentation. The decline occurred due 

to the increasing number of bacterial classes that need to 

be discriminated against. Since different species of 

bacteria could be in the same morphology, recognizing 

more bacterial classes with limited data would be 

difficult. DL often depends upon large amounts of data to 

be trained effectively, making it a strong candidate for 

DA by increasing the number of images for each class. 

2) E. coli Dataset 

Four types of CNN models were evaluated on the 

three class classifications of E. coli dataset, one labeled 

as a non-bacterial class and two labeled as a bacterial 

class. The evaluation was conducted by employing the 

same model architectures as implemented in DIBaS. The 

number of parameters of pre-trained CNN models had 

been reduced to adapt to a small size of a dataset. The 

results show in Table 3. Even without DA, CNN models 

have achieved high accuracy which is above 90%. This is 

because the dataset used only contains one bacteria 

species. In other words, it is not a difficult task to perform 

a three-class classification. However, as in Table 3, the 

results showed that the accuracy increases consistently 

with the increased amount of data. This basically is the 

premise of data augmentation. The best performance was 

yielded by VGGNet with an accuracy of 98.12% after 

performing DA. 

Figure 13 shows the confusion matrix of four CNN 

models on the E. coli dataset for the experiments without 

and with DA. The confusion matrices show that  

Figure 11. Diagram of research method. 

TABLE 2 

THE NUMBER OF PARAMETERS (IN MILLIONS) AND THE 

ACCURACY (%) OF CNN ARCHITECTURES FOR DIBAS  

Model Params Without DA With DA 

SIFT+SVM - 81.88 - 

CNN 0.79 78.47 92.67 

GCNN 1.32 80.56 92.43 

ResNet 4.73 91.67 94.11 

VGGNet 2.49 94.44 96.15 

 

 

Figure 12. The results of experiments on DIBaS where it was 

tested on the scalability of CNN architectures. 

TABLE 3 
THE NUMBER OF PARAMETERS (IN MILLIONS) AND THE 

ACCURACY (%) OF CNN ARCHITECTURES FOR E. COLI DATASET  

Model Params Without DA With DA 

SIFT+SVM - 84.91 - 

CNN 0.79 93.57 95.62 

GCNN 1.32 93.57 95.31 

ResNet 4.73 94.64 97.46 

VGGNet 2.49 96.43 98.12 
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predicting using pre-trained models improves the 

prediction result.  

Figure 14 shows the progressions of accuracy and 

loss of training data.  The results showed that on E. coli 

dataset, GCNN has the slowest loss to converge and 

followed by CNN. While ResNet and VGGNet loss 

convergence are comparable. As expected, GCNN and 

CNN are the slowest to converge on the progression of 

accuracy since their losses are also slow to converge. 

VI. CONCLUSION 

This paper presents an evaluation of deep learning 

techniques, especially deep structured convolutional 

neural networks, for bacterial classification when low-

resource data are used. Our research evaluated four types 

of CNN architectures including baseline CNN, GCNN, 

ResNet, and VGGNet. Our research also compared the 

performance of CNN models with traditional machine 

learning methods such as SIFT+SVM. The models are 

trained and evaluated using two datasets; DIBaS and our 

collected E. coli data. The results found that VGGNet 

achieves the highest accuracy. In addition, since the 

dataset used in our experiment has a small size of data, 

data augmentation was performed to increase the data. 

The results show that data augmentation consistently 

improves the accuracy of all CNN architectures. 

However, we should say that this study has limitations. 

First, the methods have not been evaluated with various 

data. Second, our research have not performed bacterial 

counting. For future direction, it is substantial to add 

different types of data collected from different 

environmental conditions (e.g. river). It is also necessary 

to count the total number of bacterial colonies grown in 

water samples for water quality assessment. It is worth 

noting that automated bacterial classification is not meant 

to replace the expert diagnosis. However, the 

implementation could assist the expertise to recognize 

microscopic images in large-scale applications in a 

shorter time. 
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Figure 14. Progression of (a) Training loss, (b) Training accuracy for all CNN architectures. 
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