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Abstract 

Recently, hybrid clustering algorithms gained much research attention due to better clustering results and are computationally 

efficient. Hyperspectral image classification studies should be no exception, including mineral mapping. This study aims to tackle 

the biggest challenge of mapping the mineralogy of drill core samples, which consumes a lot of time. In this paper, we present the 

investigation using a hybrid clustering algorithm, cohesion-based self-merging (CSM), for mineral mapping to determine the 

number and location of minerals that formed the rock. The CSM clustering performance was then compared to its classical 

counterpart, K-means plus-plus (K-means++). We conducted experiments using hyperspectral images from multiple rock samples 

to understand how well the clustering algorithm segmented minerals that exist in the rock. The samples in this study contain 

minerals with identical absorption features in certain locations that increase the complexity. The elbow method and silhouette 

analysis did not perform well in deciding the optimum cluster size due to slight variance and high dimensionality of the datasets. 

Thus, iterations to the various numbers of 𝑘-clusters and 𝑚-subclusters of each rock were performed to get the mineral cluster. 

Both algorithms were able to distinguish slight variations of absorption features of any mineral. The spectral variation within a 

single mineral found by our algorithm might be studied further to understand any possible unidentified group of clusters. The 

spatial consideration of the CSM algorithm induced several misclassified pixels. Hence, the mineral maps produced in this study 

are not expected to be precisely similar to ground truths.  

 

Keywords: clustering, hyperspectral, mineral mapping, cohesion-based self-merging. 

 

 

I. INTRODUCTION 

Close-range hyperspectral imagery (HSI) on mineral 

mapping from rock samples has become popular in the 

past few years. Several studies on utilizing the 

availability of more bands compared to the multispectral 

imagery have proven to be more effective in identifying 

minerals from the rock samples  [1]–[3]. Geologists can 

take advantage of the higher spectral resolution captured 

by the hyperspectral sensor. It allows us to identify more 

mineral variations and to distinguish the degree of 

crystallinity by the subtle wavelength shift of the 

absorption features [4].  

As demonstrated in the other fields, there are various 

existing algorithms to classify the pixels from the HSI 

dataset. In mineral mapping, one of the most popular 

methods is examining the location of the absorption 

features for the given mineral [5], [6], along with the 

Spectral Angle Mapper (SAM) [7]–[9]. Both methods 

require introducing prior knowledge (endmember and 

absorption feature of each mineral). The first mentioned 

method, defining the absorption features for each mineral 

targeted on every sample, would take time, especially for 

a large dataset with many mineral class variations. Prior 

information given, mineralogy from geologist 

interpretation or regional studies, to select end members 

of SAM is excellent. Still, with this method, we could 

probably lose some information that the human eyes 

might not capture.  

Some previous studies proved that various clustering 

algorithms efficiently extract new information about 

particular classes from HSI datasets [10]–[12]. However, 

there are still problems that the previous algorithms could 
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not capture some minerals with slight variation and small 

cluster sizes. Thus, we tried to investigate a solution that 

might be able to tackle the previously addressed 

problems with an improved clustering algorithm. 

Hybrid clustering algorithms gained much research 

attention due to better clustering results, and this method 

is computationally efficient [13], [14], [23-24]. The CSM 

is a hybrid clustering algorithm that serializes two-stage 

clustering using conventional partitioning-based and 

hierarchical-based clustering through cohesion-based 

self-merging. The cohesion-based self-merging is an 

approach that minimizes the probability density function 

of points intra-clusters and inter-clusters and also 

considers the size of the cluster to compute the distance 

matrix to reconstruct the clusters. Therefore, the CSM is 

theoretically robust to outliers, and we hypothesized that 

CSM could segment the minerals with slight distinct 

wavelength variance in HSI datasets. In this paper, we 

investigated the use of conventional partitioning-based 

clustering algorithms, namely K-means++ alongside 

hierarchical-based clustering algorithms, with 

agglomerative clustering that being merged using the 

CSM algorithm. It should be no exception for any HSI 

classification studies, including mineral mapping. In this 

paper, the result and performance of hybrid clustering 

were compared to a conventional single clustering 

algorithm.  

II. MATERIAL AND METHOD 

A. Material 

A total of three hyperspectral images of milled 

pebbles samples were obtained from the previous 

research. The hyperspectral images were scanned by ITC 

University of Twente using SWIR the SisuCHEMA 

spectral imagery. The spectral SWIR camera produces 

high spatial resolution images with 0,2mm/pixels and 

1000 - 2500 nm spectral range. This camera has 384 

spatial pixels and 288 spectral bands. The complete 

specification of the sensor can be seen in Table 1. 

We used the mineral maps from previous research 

[15], [16] to validate our algorithm classification result. 

We decided to refer our results to these maps due to our 

unavailability to access the actual samples. The research 

we mentioned has their mineral maps validated using 

several approaches such as XRF, XRD, thin section, and  

 
TABLE 1 

SISUCHEMA SENSOR DETAIL INFORMATION 

Optical Characteristic Typical Specification 

Spectral range 1000-2500 nm 

Spectral resolution 
FWHM 

12 nm (30μm) 

Spectral  sampling 5.6 nm 

Spectral resolution rms spot radius < 15 μm 

F/# F/2.0 

Slith width 30 μm (50 or 80 μm optional) 

Effective slit length 9.2 mm 

Electrical characteristic  

Detector 
Cyrogenically cooled MCT 

detector 

Spatial pixels 384 

Spectral bands 288 

Pixel size 24 x 24  μm 

Camera output 16 bit CL 

SNR 1050:1 (at max signal level) 

direct observation with the samples. Since we have 

access to these datasets, we did not perform any pre-

processing and directly used the pre-processed 

reflectance imagery of the samples. 

We used three dominant minerals in the milled 

pebbled samples: Muscovite, Tourmaline, and Illite, 

including high-crystallinity Illite, known as HX Illite. 

The most intriguing case of these mineral variations is the 

similarity between the white mica minerals, Muscovite 

and Illite. The occurrence of the water absorption feature 

on wavelength 1900 nm (feature number 145-150) is the 

determinant that differentiates Illite from Muscovite  

[17]. 

Spectral libraries from USGS were used to identify 

each mineralogy class and anticipate any non-identified 

mineral from the previous studies. One of the potential 

benefits of our clustering method is the possibility of 

unravelling a minor amount of mineral abundance in the 

rock samples. Figure 1 shows the stacked spectral for 

each mineral according to USGS. 

 

B. Method 

The hyperspectral images used in this study contains 

230 features of spectral reflectance (a subset from the 

original images within the wavelength of 1043-2486 nm). 

This subset was range selected to target the absorption 

features of the AlOH, FeOH, and MgOH mineral groups. 

As shown in Table 2, the sample size and dimension of 

HSI datasets were used in this study. The n-dimension of 

datasets was transformed into two-dimensional space in 

the data preparation stage. In the next stage, data 

exploration, we tried to find the ideal number of clusters. 

The optimum number of clusters in the datasets was 

identified using the elbow and the silhouette method. On 

the one hand, the number of k clusters was chosen 

randomly in the elbow method. The sum of the squared 

distance between the centroid and points of each 𝑘 cluster 

was computed to obtain the within-cluster sum of square 

value (WCCS). The WCCS was then plotted against 𝑘 

clusters. The elbow point was determined using graph 

analysis. On the other hand, the silhouette method uses 

average  intra-cluster  distance  and mean of inter-cluster  

 

 
Figure 1. Reflectance Spectra of Muscovite, Illite, and Tourmaline 

from USGS Spectral library. 
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TABLE 2 

HSI SAMPLE OF MILLED PEBBLED 
No Sample name Width Height Features 

1 10a_101012-120551 285 200 230 

2 62a_101012-113848 346 220 230 

3 76a_101012-114750 255 246 230 

 

distance to obtain the optimum cluster number [18]. The 

silhouette scoring metrics can be formulated as follows: 

𝑆 =
(𝑏−𝑎)

(𝑎,𝑏) 
       (1) 

 

where 𝑎 is the mean of intra-cluster distance, and 𝑏 is the 

average of inter-cluster distance. The silhouette metrics 

(S) scoring ranges from −1 < 𝑆 < 1. 

To understand the benefit of the hybrid partitional 

and hierarchical clustering algorithm, we use the 

traditional K-means++. After extracting the cluster, we 

identified the mineral of each class using the USGS 

spectral library and then later compared it to the previous 

studies using a confusion matrix. 

1) K-means++ Clustering 

K-means++ is an improved version of simple K-

means. Despite the improvement, it still uses simple K-

means kernels to cluster the data due to simplicity and 

speed [19]. The K-means++ method uses seeding from 

the shortest distance of each data point to initialize the 

centroids, presumably leading to convergence speeds 

compared to random centroids initialization on 

traditional K-means [20]. The K-means++ algorithm can 

be explained as in Algorithm 1. 

 

2) Hierarchical Clustering 

In this study, we used the agglomerative clustering 

technique. This technique is typically a bottom-up 

approach. It means, in the beginning, each data point of 

spectral reflectance value of each pixel has its own 

cluster, and then pair of clusters progressively merged as 

one to establish the hierarchy. It is necessary to define a 

certain distance and similarity threshold, known as the 

linkage criterion, to determine that the pair of clusters can 

be merged. The linkage criterion ward was used to cluster 

the datasets. Ward linkage criterion merges pair of 

clusters with minimum inter-cluster variance after 

merging [21]. The ward linkage method can be 

summarized at the beginning, and each n point has its 

own cluster. Then the initial distance between n points 

must be squared Euclidean distance. Mathematically it 

can be formulated as follow: 

 

Algorithm 1. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛} set of n data points, the 

spectral reflectance value of each pixel in cluster 𝐶 = { 𝐶1, 𝐶2,
𝐶3 , …  𝐶𝑛}, which is a mineral name cluster with centroid 𝑘 and 

𝐷(𝑥)is the shortest distance of data points to centroid 𝑘. 

Step 1 : Cluster centre 𝐶1 initialization randomly at 𝑋   

Step 2 : Get a new cluster centre 𝐶𝑛, pick data points 𝑥𝑛 

with probability 𝐷(𝑥)weighting function 
Step 3 : Repeat Step 2 until all centroids obtained 

Step 4 : Assign the 𝑥𝑛 data points to the closest centroid of 

𝐶𝑛 

Step 5 : Get a new k centroid using the Euclidean distance 

of 𝑥𝑛 in the cluster 𝐶𝑛 

Step 6 : Repeat Step 4 and 5 until convergences 

 𝑑𝑖𝑗 = 𝑑({𝑋𝑖}, {𝑋𝑗}) = ||𝑋𝑖 −  𝑋𝑗||2 (2) 

 

where 𝑑𝑖𝑗  is the distance between clusters i and j,  𝑋𝑖 =

{𝑥1, 𝑥2, 𝑥3, … 𝑥𝑖} set of 𝑖 data points and  𝑋𝑗 =

{𝑥1, 𝑥2, 𝑥3, … 𝑥𝑗} set of j data points. 

 

3) CSM  

CSM is a hybrid clustering algorithm that uses a 

partitioning-based clustering algorithm and a 

hierarchical-based clustering algorithm [13], [22]. 

However, CSM has hard constraints as the number of 

sub-clusters must be greater than the number of objective 

k clusters, or it cannot work as expected. The detailed 

hybrid clustering algorithms that were used in this study 

are described in Algorithm 2. 

There are three stages in the CSM algorithm. The 

first stage is to obtain the values of the mean vector (μ), 

and covariance matrix of each cluster (ψ) using the 

maximum likelihood estimator, as the values are 

unknown. Given the location of n points, 𝑉 = 

(𝑣1, 𝑣2, … , 𝑣𝑛), it was estimated by using the following 

formulas:  

 

 
�̂� =  

1

𝑛
∑ 𝑣𝑖

𝑛

𝑖=1

 
 

(3) 

 
and  

 

 
𝜓 =  

1

𝑁
∑(𝑣𝑖 −  �̂�) (𝑣𝑖 − �̂�)𝑇

𝑛

𝑖=1

   
 

(4) 

 

The location of a point and mean vector are 𝑑-variate 

vectors, and the covariance matrix is an absolute definite 

𝑑 𝑥 𝑑 matrix. Moreover, it is assumed that the location of 

n points in each cluster follows a multivariate normal 

distribution. In the second stage, it computes the values 

of the probability density function of each pixel 

𝑝𝑑𝑓 𝑓(𝑣) by using the following formula: 

 

𝑓(𝑣) = (2𝜋)−
𝑑
2  (𝑑𝑒𝑡 𝑑𝑒𝑡 𝜓 )−

1
2

𝑒𝑥𝑝 𝑒𝑥𝑝 [−
1

2
 𝛥2 (𝑣)]   

 

(5) 

 

where 

 

 𝛥2 =  (𝑣𝑖 −  𝜇)𝑇𝜓−1(𝑣 −  𝜇)  (6) 

 

 

Algorithm 2. Let 𝑋 = {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛} set of n data points, the 

number of clusters 𝑘, the number of sub-cluster of 𝑚 and 𝑚 > 𝑘  

Step 1 : Apply K-means++ to obtain the number of 𝑚 sub-

cluster  

Step 2 : Apply the CSM algorithm to obtain the similarity 

matrix of each 𝑚 sub-cluster obtained in Step 1 

Step 3 : Apply the complete link clustering algorithm on 

𝑚 sub-cluster obtained in Step 1 with cohesion as 

similarity matrix obtained in Step 2 and stop when 

k clusters are obtained 
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where 𝑑 is the space dimension. The final stage is to 

compute the joinability of each cluster based on the 

existence of grouped pixels. The basic rule of CSM 

related to constructing the joinability:  

1. Pixels data located closest to the boundary of two 

clusters are important 

2. The way clusters merge should not be because 

there are only a few pixels.   

It can be formulated as follows: 

 

 𝑗𝑜𝑖𝑛(𝑝, 𝐶𝑖 , 𝐶𝑗) = (𝑓𝑖(𝑣),   𝑓𝑗(𝑣)) (7) 

 

where 𝑓𝑖 and 𝑓𝑗, are probability density functions of 

cluster 𝐶𝑖  and cluster 𝐶𝑗 . Thus the cohesion of two 

clusters 𝐶𝑖 and 𝐶𝑗, can be formulated as follows: 

 

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛(𝐶𝑖 , 𝐶𝑗) =  
∑𝑝𝜖 𝐶𝑖,𝐶𝑗

𝑗𝑜𝑖𝑛 (𝑝, 𝐶𝑖, 𝐶𝑗) 

|𝐶𝑖| + |𝐶𝑗|
 

 

(8) 

 

where |𝐶𝑖| + |𝐶𝑗| is the total sum of the size cluster 𝐶𝑖 and 

𝐶𝑗. The intuitive illustration of joinability between two 

clusters (𝐶𝑖, 𝐶𝑗) applied to mineral mapping, as shown in 

Figure 2. The cohesion or similarity matrix of 𝑚 sub-

cluster is then applied to agglomerative clustering to 

obtain desired 𝑘 cluster.  

 

4) Confusion Matrix 

 Comparative studies were also done to evaluate the 

mineral distribution of the clustering algorithm. We 

compared our result and the mineral maps from the 

previous study through visual comparison and confusion 

matrix. It was conducted to assess the results 

qualitatively and quantitatively.  

This matrix has four basic values that represent the 

classification result, as shown in Figure 3. True Positive 

(TP) represent the number of positive prediction that is 

actually correct, and True False (TN) is a negative 

prediction that is actually correct. False Positive (FP) is a 

positive prediction when the actual value is negative, 

means an incorrect prediction, and False Negative (FN) 

where the prediction is negative and the actual value is 

positive that also means incorrect prediction. 

From those basic values, we then calculate Recall, 

Precision, and Accuracy using these formulas: 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(10) 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
 

(11) 

 

Since we are anticipating other minerals that might 

be found using this methodology, we can assess the recall 

of the existing mineral instead of only focusing on the 

overall accuracy that would potentially be low due to the 

addition of a new mineral class.  

III. RESULTS AND DISCUSSION 

The CSM clustering result was compared to their 

vanilla clustering algorithm counterpart, K-means++.  

A. HSI Data Exploration 

The HSI dataset sample consists of three samples, as 

shown in Figure 4. These samples have been pre-

processed and calibrated to obtain the reflectance value 

of each pixel location in the image.  

We also discovered the occurrence of four different 

mineral clusters using visual analysis according to their 

different colour, tone, and spectral wavelength, as shown 

in Figure 5. These wavelength reflectance differences 

result from each mineral’s different levels of light 

absorbance. However, the segmentation process of each 

mineral becomes puzzling when there is an identical 

spectral wavelength to two distinct minerals, such as 

high-crystalline illite and illite itself.    

Hence, there was a challenge to determine the 

optimum number of clusters using the elbow method and 

the silhouette method, as the plotted curve in the elbow 

method shown in Figure 6 is considerably smooth and 

becomes ambiguous. The ambiguity appeared due to low 

variance between points of each cluster despite the large 

gap of identified spectral wavelength starting from 

number 0 until 190, as shown in Figure 5. As for the 

silhouette analysis results, as shown in Table 3, the 

separation distance value of each cluster is getting 

lowered as the number of clusters arose. Moreover, the 

presence of unequal size of each cluster appeared when 

the number of clusters is more than four clusters, 

although it satisfies the minimum silhouette score, as 

shown in Figure 7. 

 
Figure 2. The joinability of cluster 𝐶𝑖 and 𝐶𝑗 occurs at location 

pixels 𝑣1 and pixels 𝑣2. 

 
Figure 3. Illustration of the matrix of the classification result. 
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B. Clustering Result 

Since the elbow method and silhouette analysis gave 

ambiguous information regarding the optimum cluster 

number, we decided to cluster the data into six clusters. 

The other two additional clusters were intended to 

capture the anticipated of other unidentified minerals 

other than the four previously classified minerals. Details 

about the clustering algorithm results on each sample are 

discussed below.  

K-means++ was able to extract the expected six 

clusters. Cconversely, the CSM algorithm can only 

obtain four to five clusters from these samples. It is 

highly anticipated that the CSM algorithm merges the 

clusters from 10 subclusters used in this experiment. 

CSM algorithm tried to connect clusters with the closest 

distance in terms of the points located inside the two 

TABLE 3 

SILHOUETTE SCORE OF EACH SAMPLE DATASET 

No Sample name C = 3 C = 4 C = 5 C = 6 

1 10a_101012-120551 0.42 0.39 0.37 0.33 

2 62a_101012-113848 0.44 0.38 0.36 0.33 

3 76a_101012-114750 0.40 0.36 0.33 0.30 

 

 

 
Figure 7. Silhouette analysis with various k numbers of the 

cluster on sample 62a_101012-113848. 

 

 

 

Figure 2. The joinability of cluster 𝐶𝑖 and 𝐶𝑗 occurs at location 

pixels 𝑣1 and pixels 𝑣2 

  
(a) (c) 

 
(b) 

Figure 4. Sample picture of HSI milled pebbled: 

(a) 10a_101012-120551; (b) 76a_101012-114750;  
(c) 62a_101012-113848. 

 

 
Figure 5. Spectral reflectance of unclassified minerals of 

62a_101012-113848 sample. 

 

Figure 6. Shows the optimum cluster number selection using the 

elbow method. 
 

 

 
 

 

 
 

 

 
 

 

 
Figure 8. Minerals segmentation using CSM and K-means++ on 

milled pebbled samples (a) 10a_101012-120551  

(b) 76a_101012-114750 (c) 62a_101012-113848 
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clusters or intra-cluster. Moreover, it also tried to connect 

clusters by considering the distance points location 

between two clusters or inter-cluster. The CSM also 

consider the size of each cluster in the merging process.  

Clustering performance using the CSM algorithm 

visually has better separation and distinct boundary 

between clusters than K-means++, as shown in Figure 8.  

The mineral map and the spectra of each cluster of 

sample 10a_101012-120551, as depicted in Figure 9, 

show an apparent disparity between clusters. Cluster 𝑘1, 

𝑘2, 𝑘3 have discrepancy form of wavelength to other 

clusters despite spectral mixing occurrences. The spectral 

mixing also occurred in 𝑘0. It means that several pixels 

are clustered in the wrong label. While 𝑘4 has distinct 

cluster form and boundary. 

Nonetheless, there is also the occurrence of 

resemblance spectral found between cluster 𝑘0 and 𝑘4 but 

the CSM algorithm is able to capture both of these 

clusters. These events are applied to the other samples.   

The mineralogy of each class in both mineral maps 

was determined by comparing them with the USGS 

spectral library as the baseline, as depicted in Figure 1. 

The comparison result shows that the mineralogy of each 

class is defined as depicted in the Table 4A and 4B 

 
Figure 9. The spectral wavelength of each cluster (𝑘𝑛) of sample 

10a_101012-120551 were segmented using the CSM algorithm.  

 
TABLE 4A 

THE MINERALOGY IDENTIFICATION OF EACH CLUSTER 𝑘 

# k Mineralogy 

10a_101012-120551 

Mineralogy 

62a_101012-113848 

CSM K-means++ CSM K-means++ 

0 Illite Muscovite Muscovite Muscovite 

1 Tourmaline Muscovite Tourmaline HX Illite 

2 HX Illite Tourmaline Illite Tourmaline 

3 Muscovite HX Illite - Illite 

4 Muscovite HX Illite - Muscovite 

5 - Illite - Illite 

 

TABLE 4B 

THE MINERALOGY IDENTIFICATION OF EACH CLUSTER 𝑘 

# k Mineralogy 

76a_101012-114750 

CSM K-means++ 

0 Tourmaline Muscovite 

1 Illite Muscovite 

2 HX Illite Muscovite 

3 Muscovite Illite 

4 Muscovite Tourmaline 

5 - HX Illite 

 

 

The mineral identification analysis surprisingly 

discovered slight variations in mineral classes. The 

spectral wavelength variance between minerals is low. 

Nonetheless, using the K-means++ algorithm, the 

minerals extraction result showed that two variations of 

HX Illite and two of Muscovite were clustered 

differently.  

While using the 62a_101012-113848 sample, the 

best CSM estimator can only extract three clusters, while 

K-means++ has six clusters. In this sample, both Illite 

and Muscovite are clustered into two and three different 

𝑘0 𝑘1 

𝑘2 𝑘3 

𝑘4 

 
CSM K-means++ 

(a) 

 

CSM K-means++ 

(b) 

 
CSM K-means++ 

(c) 

Figure 8. Minerals segmentation using CSM and K-means++ on 

milled pebbled samples: (a) 10a_101012-120551; 
(b) 76a_101012-114750; (c) 62a_101012-113848. 
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classes by the K-means++ algorithm. Due to the merged 

cluster done by CSM, HX Illite could not be captured in 

this sample. Conversely, in sample 76a_101012-114750, 

both algorithm able to capture all of the intended 

minerals despite CSM captures Illite less than K-

means++.  

C. Comparison with The Previous Study 

After identifying the mineralogy of each sample, we 

compare the new mineral maps and the reference from 

the previous study. For this purpose, we merge our 

clusters into four kinds of minerals to match the total 

classes of the previous study. Minerals were divided into 

multiple clusters by CSM, and K-means++ was grouped 

into a single class. We can see the visual comparison of 

each mineral map as shown in Figure 10.  

According to the visual comparison as shown in 

Figure 10 and confusion matrix assessment as shown in 

Figure 11, both clustering algorithms produce decent 

outputs from the samples 10a_101012-120551 and 

76a_101012-114750. However, misclassification exists 

in any minerals. As we can see in these samples, only 

Muscovite and Tourmaline consistently have good 

precision and recall values in any algorithm. The 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 11. Confusion matrices and classification reports of the 
samples: (a) 10a_101012-120551; (b) 76a_101012-114750;  

(c) 62a_101012-1.13848 
 

 
Legend 10a 76a 62a 

(a)  

 
Legend CSM K-means++ 

(b) 

 
Legend CSM K-means++ 

(c) 

 
Legend CSM K-means++ 

(d) 

Figure 10. Visual comparison between the mineralogy after 

merging with the previous study:  (a) Previous Study;  
(b) 10a_101012-120551; (c) 76a_101012-114750;  

(d) 62a_101012-1138. 
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expected problem, the similarity between white mica, 

caused the mixed cluster between Illite and HX Illite. 

Conversely, the clustering results from sample 

62a_101012-113848 did not show good numbers in the 

visual comparison and confusion matrix application. 

Both algorithm in this sample could not map the 

mineralogy of the sample close to the mineral map from 

the previous study and also the spatial distribution of the 

minerals in this sample. 

IV. CONCLUSION 

The mineral maps produced by CSM and K-

means++ results were not showing exactly a similar 

result to the previous study. Especially in the CSM 

algorithm, several pixels were clustered in the wrong 

class due to the location of the pixel trapped inside the 

other class. This different outcome is exactly the intended 

result of this study, performing data mining to unravel 

hidden information from the existing mineral maps. 

However, both clustering algorithms face the same 

problem while dealing with white mica minerals. 

Spectral clustering and density-based spatial clustering 

combination, along with a little treatment in the pre-

clustering process, might be applied to try separating 

these minerals in a better way. 

Despite the limitations demonstrated in this study, 

both algorithms are able to distinguish the variation of 

each mineral. Any mineral that was defined as a single 

unit in previous studies was clustered into two or more 

classes using this clustering algorithm. Advanced study 

on what caused these variations might be done to 

understand if there is any unidentified event, such as 

other chemical content that is recorded in these mineral 

variations. 
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