
 Jurnal Elektronika dan Telekomunikasi (JET), Vol. 22, No. 2, December 2022, pp. 72-77

Accredited by KEMDIKBUDRISTEK, Decree No: 158/E/KPT/2021

doi: 10.55981/jet.490

* Corresponding Author.

Email: sfuady@unja.ac.id
Received: August 14, 2022 ; Revised: September 12, 2022

Accepted: November 15, 2022 ; Published: December 31, 2022

Open access under CC-BY-NC-SA

© 2022 BRIN

25-32

Cooperative Line Formation Control of Multi-Agent

Systems Based on Least Squares Estimation

Samratul Fuadya, *, Arumjeni Mitayanib, Ario Birmiawan Widyoutomo,

Arief Suryadi Satyawanb, Alexander Christantho Budimanc, Suyoto Suyotob,

Mochamad Mardi Marta Dinatab
aDepartement of Electrical Engineering

Jambi University

Jl. Jambi - Muara Bulian No. KM. 15, Mendalo Darat, Muaro Jambi

Jambi, Indonesia
bResearch Center for Telecommunication

National Research and Innovation Agency

Komplek BRIN Jl. Sangkuriang No. 21

Bandung, Indonesia
cResearch Center for Transportation Technology

National Research and Innovation Agency

Komplek BRIN Jl. Sangkuriang No. 21

Bandung, Indonesia

Abstract

In this paper, we consider the problem of multi-agent systems where each agent aims to establish a line formation in a

distributed manner. In constructing an efficient line formation, finding a line with the closest total distance from every agent is

essential. We propose a formation control using least squares estimation (LSE) performed by each agent with only the local

information that consists of the corresponding agent’s and neighbors’ positions. Each agent calculates the local cost function,

which is the squared distance from the LSE line to the related agent’s and its neighbors’ positions. Our goal is to minimize the

global cost function, which is the sum of these local cost functions. To achieve this, we employ distributed optimization to the

global cost function of the overall system using the subgradient method performed by each agent locally. We evaluate our

proposed method using numerical simulation, and the result complies with our goal of this paper.

Keywords: LSE, formation control, distributed optimization, multi-agent systems.

I. INTRODUCTION

Lately, the tasks performed by autonomous agents

are becoming more complicated. Forcing an individual

agent to achieve a complex mission is costly and

impractical, and sometimes impossible. For example, in

logistic transportation [1], using an individual agent to

deliver heavy and numerous objects will require

massive and expensive equipment. Meanwhile, if the

goods are split and transported by multiple agents, each

agent will only need a simple requirement that is easier

to implement. Consequently, research on multi-agent

systems has received much attention in recent years.

Multi-agent systems have been deployed in various

applications, such as military [2], air traffic control [3],

autonomous vehicle [4], satellite [5], communication

[6], and logistic transportation, as mentioned previously.

There are multi-agent systems approaches: centralized

and distributed [7]. The centralized approach, there is

one centralized unit or agent acting as a leader that can

oversee and direct all other agents in the system.

Meanwhile, in the distributed approach, there is no

hierarchical structure amongst the agents, i.e., all agents

have the same level of autonomy and make decision

based on their local information. In this paper, we use

the latter approach because in the centralized approach,

the system will potentially collapse if the central agent

malfunctions. The multiple agents in our system share

the information with the adjacent agents, called

neighbors. The agents can share the information

containing the parameter of interest, for example,

location, sensor reading, and other parameters

depending on the application. Multi-agent systems

working cooperatively under a particular coordination

scheme have many advantages over single-agent

systems, such as reducing complexity and availability of

redundancy.

There are some issues regarding multi-agent

systems: coverage, consensus, navigation, and

formation control [8], however, this paper will focus on

formation control, and the other issues are out of this

paper’s scope. Formation control is adapting the

formation behavior of nature [9], such as schools of

fish, flocks of birds, the swarm of ants, and many other

animals staying in formation, as well as pedestrian

behavior in humans [10]. In this case, animal formation

has many benefits, such as conserving energy, retreating

from predators, and keeping connectedness. Similarly,

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 22, No. 2, December 2022

Cooperative Line Formation Control of Multi-Agent Systems Based on Least Squares Estimation • 73

the agents in multi-agent systems also adapt those

animals’ behavior in making a formation. The benefits

as mentioned above are what agents in the systems are

expected to achieve. Thus, with formation control, the

agents can save their energy, increase systems’

robustness and efficiency , and keep their connectedness

[11].

One of the most used structures of formation

control is the line-based formation which will be

referred to as line formation because of its simplicity

and applicability in a lot of applications. For example,

in military applications, military robots need to form

platoon lines to execute missions efficiently for both

attacking and defending while keeping communication

intact. In this formation, the agent must create and

maintain line arrangements during their mission. There

are several approaches to forming a formation in multi-

agent systems, such as distance-based [12], virtual

structure [13], etc. In this paper, to obtain the line for

achieving the desirable formation, we propose least

squares estimation (LSE) based line formation control

as it is intuitively the most efficient way to obtain a line

with the shortest total distance from every agent. In

application, it will imply the energy and time efficiency

of the proposed system. To the best of the authors’

knowledge, this paper is the first to propose LSE as the

approach for line formation control.

LSE is usually performed when we have all the data

points. However, in this case, each agent will need to

perform LSE based on its local data, which can generate

different results from each agent. Thus, in this paper, we

use distributed optimization [14] to have all the agents

agree on the optimal line based on the local data.

This paper is organized as follows. We describe the

problem formulations in Section II. Then, we explain

the proposed algorithm in section III. In section IV, we

show the simulation result of the proposed algorithm.

We finally conclude our work in Section V.

II. PROBLEM FORMULATION

In this section, we describe the setup of the problem

and provide some notations related to the problem set.

Furthermore, we also elaborate on the LSE we use in

the problem.

A. Graph Notions

Consider a multi-agent system with 𝑛 agents which

interact with each other through a network described as

an undirected graph 𝒢 = (𝒱, 𝜀) where 𝒱 = {1,2,3, … , 𝑛}
is the node set and 𝜀 ⊂ 𝒱 × 𝒱 is the undirected edge set.

The edge (𝑖, 𝑗) ∈ 𝜀 means that agents 𝑖 and 𝑗 can

exchange information (or 𝑖 and 𝑗 are neighbor). For each

node 𝑖, we denote its neighbor set by 𝒩𝑖 ⊂ 𝒱 and total

number of neighbors of agent 𝑖 is written as |𝒩𝑖|.
The adjacency matrix 𝒜 = [𝑎𝑖𝑗] ∈ ℝ𝑛×𝑛, which

describes connection between agents of graph 𝒢, is

defined as 𝑎𝑖𝑗 = 𝑎𝑗𝑖 > 0 if (𝑖, 𝑗) ∈ 𝜀 where 𝑖 ≠ 𝑗 and

𝑎𝑖𝑗 = 0 otherwise. The Laplacian matrix ℒ = [𝑙𝑖𝑗] ∈

ℝ𝑛×𝑛, which is the representation of graph 𝒢, is defined

as 𝑙𝑖𝑖 = ∑ 𝑎𝑖𝑗𝑖≠𝑗 and 𝑙𝑖𝑗 = −𝑎𝑖𝑗 where 𝑖 ≠ 𝑗. A square

matrix 𝒫 is called a stochastic matrix when its

components 𝑝𝑖𝑗 are nonnegative and each sum of the

row of 𝒫 is equal to 1, and it is doubly stochastic when

both 𝒫 and 𝒫𝑇 are stochastic matrices.

The dynamics of each agent are described as

discrete-time single-integrator dynamics, which is

shown in (1),

 𝑟𝑖(𝑘 + 1) = 𝑟𝑖(𝑘) + 𝑢𝑖(𝑘), 𝑖 = 1,2, … , 𝑛. (1)

where 𝑟𝑖 = [
𝑥𝑖

𝑦𝑖
] ∈ ℝ2 represent the agents’ position in

two-dimensional plane, and 𝑢𝑖 is the control signal of

agent 𝑖.

B. Least Squares Estimation (LSE)

We consider the problem when each agent performs

LSE based on its local information. Our parameter of

interest in this case is the agent’s position on the plane,

which is given by 𝑟𝑖 = [
𝑥𝑖

𝑦𝑖
]. Each agent can only

communicate its position to its neighbors.

Consider each agent has dataset 𝑥�̃� ∈ ℝ|𝒩𝑖|+1

consisting of 𝑥𝑖 and 𝑥𝑗 , 𝑗 ∈ 𝒩𝑖 and 𝑦�̃� ∈ ℝ|𝒩𝑖|+1

consisting of 𝑦𝑖 and 𝑦𝑗 , 𝑗 ∈ 𝒩𝑖 . We can see that each

agent’s dataset contains its own position and its

neighbors’ positions. For LSE problem, we define 𝑋�̃� =

[𝑥�̃� 𝟏] where 𝟏 = [1 … 1]𝑇 ∈ ℝ|𝒩𝑖|+1. Suppose 𝑦�̃�

is an 𝓂 vector and 𝑋�̃� an 𝓂 × 𝓃 matrix with linearly

independent columns. Then there is a unique 𝓃 vector 𝛾�̂�

which minimizes ‖𝑦�̃� − 𝑋�̃�𝛾𝑖‖ over all 𝛾𝑖 (the norm

taken as the Euclidean m-space norm). In our multi-

agent system, 𝓂 is equal to |𝒩𝑖| + 1 and with 𝓃 is

equal to 2, the LSE will result first degree polynomial,

which is a line. Another value of 𝓃, for example, 3 or

more, will result second and higher degree polynomial,

which is not a straight line we are looking for. The

analytical 𝛾𝑖 which is 𝛾�̂� can be calculated as (2).

𝛾�̂� = (𝑋�̃�
𝑇
𝑋�̃�)

−1

𝑋�̃�
𝑇
𝑦�̃� (2)

From (2) we can have the LSE parameter for each

agent. For illustration, we have six agents with the

positions and network topology shown in Figure 1. The

agents’ positions are represented in labeled dots and the

black lines that connect one agent to another agent

represent network topology. The adjacency matrix in

this case is given by (3).

𝒜 =

[

0 1 1
1 0 1
1 1 0

1 0 0
1 0 1
0 1 1

1 1 0
0 0 1
0 1 1

0 1 0
1 0 1
0 1 0]

 (3)

As we can see, agent A has three neighbors: agent

B, agent C, and agent D. Based on its local information,

which is the position of its three neighbors and itself,

agent A performs LSE, and the result is the red line.

Similarly, agent B, which has four neighbors: agent A,

agent C, agent D, and agent F, performs LSE and result

the yellow line. This process is also performed by other

agents in the system simultaneously. The resulting LSE

for each agent is shown in corresponding color in Figure

1.

74 • Samratul Fuady, et. al.

p-ISSN: 1411-8289; e-ISSN: 2527-9955

Figure 1. LSE calculated by each agent based on its local information.

Clearly, we can see that the resulting line is

different from one agent to the other agents. This is

because the total information that is received by each

agent is different depending on its neighbors. Our goal

is to have all agents agree on the same line, which will

be the base line for the formation.

III. DISTRIBUTED OPTIMIZATION

In this part, we will describe the method we

develop to solve the problem mentioned in the previous

section.

A. Distributed Subgradient Method

A distributed algorithm for minimizing the sum of

convex functions has been introduced in [14]. In this

method, each agent executes the update rule that

consists of the consensus step and subgradient step, as

given in (4).

𝑥𝑖(𝑘 + 1) = ∑𝑝𝑖𝑗𝑥𝑗(𝑘) − 𝑠𝑑𝑖(𝑘)

𝑗∈𝒱

 (4)

where 𝑥𝑖(𝑘) is the position of agent 𝑖 at time 𝑘, 𝑝𝑖𝑗 is

the element of Perron Matrix, a doubly stochastic matrix

corresponding to the network topology, 𝑠 is the stepsize

of gradient (or subgradient) descent step, and 𝑑𝑖(𝑘) is

the gradient (or subgradient) of the cost function 𝐽𝑖
computed at 𝑥𝑖(𝑘). This algorithm is proven to

converge to minimizer as long as the graph is connected

with the convergence rate given by (5) (see [14]

Theorem 1.3).

𝐽(𝑥�̂�(𝑘)) ≤ 𝐽∗ +
𝑠𝐷2𝐶

2
+

4𝑛𝐷

𝑘𝛽(1 − 𝛽)
∑‖𝑥𝑗0‖

𝑗∈𝒱

+
𝑛

2𝑠𝑘
(𝑑𝑖𝑠𝑡(𝛼, 𝑋∗) + 𝑠𝐷)2

(5)

where 𝐽∗ is the optimum cost function, 𝑋∗ is the optimal

solution, 𝑥�̂�(𝑘) =
1

𝑘
∑ 𝑥𝑖(𝜏)

𝑘
𝜏=1 , 𝐷 is bound for

subgradient, 𝑛 is number of agents, 𝐶 = 1 + 8𝑛(2 +
𝑛

𝛽(1−𝛽)
), 𝛽 = 1 −

𝜂

4𝑛2, 𝜂 is lower bound for 𝑝𝑖𝑗 > 0, and

𝛼 =
1

𝑛
∑ 𝑥𝑖(0)𝑛

𝑖=1 .

When the number of iterations goes to infinity, the

last two terms of (5) become zero. We can see that the

accuracy of this algorithm depends on the step size, the

upper bound of the cost function gradient, and also the

number of agents.

B. Proposed Cost Function

We introduce the local cost function for agent 𝑖 as

the residue from the LSE. The residue is the vertical

distance between the agents and the LSE line, which

will be referred to as LSE residue as shown in Figure 2

with the example of agent A and its neighbors: agent B,

agent C, and agent D, identical to the example we

mention in subsection II.B. Local cost function is then

calculated as the sum of LSE residue of corresponding

agent and its neighbors with respect to the LSE line

which can be calculated as (6).

𝐽𝑖(𝑥, 𝑦) = ‖𝑦�̃� − 𝑋�̃�𝛾�̂�‖
2

𝐽𝑖(𝑥, 𝑦) = ‖[𝐼 − 𝑋�̃� (𝑋�̃�
𝑇
𝑋�̃�)

−1

𝑋�̃�
𝑇
] 𝑦�̃�‖

2

(6)

Note that the local cost function will become zero,

i.e., 𝐽𝑖(𝑥, 𝑦) = 0 when the corresponding agent and its

neighbors are forming a line, as shown in Figure 3 for

the case of agent A.

To optimize the multi-agent system, we need to

minimize the cost function of all agents, which is the

sum of the local cost function from each agent in (6) as

described in (7).

𝐽(𝑥, 𝑦) = ∑ 𝐽𝑖(𝑥, 𝑦)

𝑛

𝑖=1

(7)

When all agents in (7) are aligned, as shown in

Figure 4, we find the total cost function, 𝐽(𝑥, 𝑦) = 0.

So, by solving the optimization problem for (7), we will

achieve a line formation based on LSE, i.e., LSE-based

agreement of all agents in the system. Furthermore,

because each agent performs the local calculation not in

a centralized manner, we can solve it using distributed

optimization method.

To solve this distributed optimization problem, we

need to investigate the convexity of our cost function.

Let us first consider the local cost function in (6) for an

agent having three information (2 from its neighbors

and one from itself), which is denoted as 𝐽1(𝑥, 𝑦) and can

be calculated in (8).

𝐽1(𝑥, 𝑦)

=
(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2)

2

(𝑥1 − 𝑥2)
2 + (𝑥2 − 𝑥3)

2 + (𝑥3 − 𝑥1)
2

(8)

where (𝑥1, 𝑦1) denotes the position of the corresponding

agent itself, while (𝑥2, 𝑦2) and (𝑥3, 𝑦3) represent the

positions of its neighbors. The cases for a bigger

number of information can be generalized from (8). It is

important to note that this is the minimum number of

local information because if the agent does only have

two pieces of information (from itself and one

neighbor), these two points will be a line, i.e., the cost

function will be zero at all times, which is not enough to

create an agreement with other agents. In the case when

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A B

C

D

E

F

LSE Agent A

LSE Agent B

LSE Agent C

LSE Agent D

LSE Agent E

LSE Agent F

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 22, No. 2, December 2022

Cooperative Line Formation Control of Multi-Agent Systems Based on Least Squares Estimation • 75

Figure 2. The distance from agent A and its neighbors to LSE line

performed by agent A.

Figure 3. Case when agent A and its neighbors are forming a line.

Figure 4. Case when all agents in the system are forming a line.

the agent has only one piece of information (only from

itself), it means the agent is disconnected from the

group, which also makes agreement impossible. So, the

necessary condition for each agent is to have at least

two neighbors.

As we analyzed the Hessian matrix of (8), we found

that it is not a positive semidefinite matrix for all (𝑥, 𝑦),

which implies that the cost function (8) is not a convex

function. Moreover, due to its denominator, this cost

function is also difficult to analyze. So, we propose

some modifications to this local cost function without

losing the objective of the cost function itself. We can

obtain the new cost function in (9) by multiplying the

cost function with its denominator.

𝐽1(𝑥, 𝑦) = (𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1

+ 𝑥2𝑦3 − 𝑥3𝑦2)
2

(9)

We can see that 𝐽1(𝑥, 𝑦) = 0 if and only if the agent

with its neighbors forms a line, which suits our

objective. As we analyze the Hessian matrix of (9), this

new cost function still does not have a positive

semidefinite Hessian matrix for all (𝑥, 𝑦), which means

it is not a convex function. But it has some properties

that are very useful for us.

We first look at the gradient of 𝐽1(𝑥, 𝑦) with respect

to 𝑥1 as written in (10).

𝜕𝐽1(𝑥, 𝑦)

𝜕𝑥1

= 2(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1

+ 𝑥2𝑦3 − 𝑥3𝑦2)(𝑦2 − 𝑦3)

(10)

Equation (10) becomes zero in two cases if the agent

and its neighbors are on a line or if 𝑦2 = 𝑦3. By

evaluating the gradient of 𝐽1(𝑥, 𝑦) with respect to other

variables, e.g., 𝑥2, 𝑥3, 𝑦1, 𝑦2, and 𝑦3, we can see that all

the gradient becomes zero if and only if the agent and

its neighbor form a line or they are in the same point

(𝑥1 = 𝑥2 = 𝑥3 and 𝑦1 = 𝑦2 = 𝑦3) which can also be

considered as forming a line.

According to Fermat’s theorem, we can infer that

from these findings, for local cost function (9), there is

no local minimum except for the case when a line is

formed by the agent and its neighbors. Moreover, there

always exists a path from one local minimum to another

local minimum where agents keep aligned, i.e., stay in

the local minimum. This implies the local minimum is

next to each other, creating a minimum local area. So,

the local cost function (9) is monotonically decreasing

until minimum local area and then monotonically

increasing afterward, which is close to the convex

function.

Following from the case of three information, the

cost function for agents with bigger number of

neighbors can be generalized as (11).

𝐽𝑖(𝑥, 𝑦) =

(

 ∑ (𝑥𝑝 − 𝑥𝑞)
2

𝑝,𝑞∈𝒩𝑖∪𝑖
𝑝≠𝑞)

 ‖[𝐼

− 𝑋�̃� (𝑋�̃�
𝑇
𝑋�̃�)

−1

𝑋�̃�
𝑇
] 𝑦�̃�‖

2

(11)

Consequently, the global cost function to be

minimized is (12), which is the sum of local cost

function (11).

𝐽(𝑥, 𝑦) = ∑𝐽𝑖(𝑥, 𝑦)

𝑛

𝑖=1

 (12)

C. Gradient-Based Algorithm

Based on the cost function in (12), we design an

algorithm to minimize the global cost function. It is

clear that the minimum value of the global cost function

is 0 and it happens only when all agents form a line.

Because the local cost function is a non-negative

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A

B

C

D

LSE Agent A

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A

B
C

D

LSE Agent A

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A

B
C

D

E

F

LSE Agent A

LSE Agent B

LSE Agent C

LSE Agent D

LSE Agent E

LSE Agent F

76 • Samratul Fuady, et. al.

p-ISSN: 1411-8289; e-ISSN: 2527-9955

function, this condition will be achieved when all local

cost function in (11) is zero, which is when all agents

form a line with their own neighbors. With the

properties of the local cost function described in

subsection III.B, optimization can be done by

minimizing each local cost function by each agent using

the subgradient descent method as described in

subsection III.A.

Consider the distributed subgradient update rule in

(13),

𝑢𝑖(𝑘) = −𝑠

[

Δ𝐽𝑖
Δ𝑥𝑖

Δ𝐽𝑖
Δ𝑦𝑖]

 (13)

where Δ𝐽𝑖 = 𝐽𝑖(𝑥(𝑘), 𝑦(𝑘)) − 𝐽𝑖(𝑥(𝑘 − 1), 𝑦(𝑘 − 1)),

Δ𝑥𝑖 = 𝑥𝑖(𝑘) − 𝑥𝑖(𝑘 − 1), Δ𝑦𝑖 = 𝑦𝑖(𝑘) − 𝑦𝑖(𝑘 − 1)
and 𝐽𝑖(𝑥(𝑘), 𝑦(𝑘)) can be obtained from (11) with

(𝑥(𝑘), 𝑦(𝑘)) is the instantaneous position at time step 𝑘.

The update rule in (13) can be easily applied in

each agent locally based on agents’ dynamics in (1).

Note that the update rule in (13) does not consider the

distance between agents. This problem will need further

proof and analysis, which is out of the scope of this

paper. We provide the simulation results of this in the

next section.

IV. SIMULATION RESULTS

In this section, we evaluate the proposed methods

through a simulation. We examine the update rule (13)

for the case of six agents with network topology shown

in Figure 5. We can see that the graph is connected, and

every agent has at least two neighbors. The adjacency

matrix for this case is already written in (2). The initial

position in the two-dimensional plane is 𝑟(0) =

[
1 2 2 1 3 3
2 2 1 4 2 1

]. We set the step size parameter s

= 0.05.

From Figure 6(a), we can see that, each agent has

different LSE at the beginning as shown in colored

lines. After we run the algorithm in each agent, we can

see that the LSEs from each agent are getting closer

(Figure 6(b)-(c)) and finally coincide into one line, i.e.,

all agents agree in the same LSE and establish a line

formation as shown in Figure 6(d). The local cost

function for each agent (𝐽𝑖) and the global cost function

(𝐽) is shown in Figure 7 and Figure 8, respectively. By

applying the update rule in (13), we can see that the cost

function is consistently goes down and goes to

minimum after 34-time steps.

We also test this algorithm in constructing line

formation for source-seeking missions. The agents are

placed in the signal field area and need to locate their

source. The initial positions of agents are shown in

Figure 9.

We combine our LSE-based line formation control

with the source seeking and obstacle avoidance control

from [15], and the resulting trajectory is shown in

Figure 10. As we can see, the multi-agent systems

successfully locate the source of signal field and

maintain the line formation during the mission.

Figure 5. Network topology and positions of the agents.

Figure 6. Agents’ position and its corresponding LSE at (a) initial

condition; (b) 10-time steps; (c) 20-time steps; and (d) 40-time steps.

Figure 7. Local cost function of each agent.

Figure 8. Global cost function.

0 1 2 3 4 5
0

1

2

3

4

5

A B

C

D

E

F

0 5 10 15 20 25 30 35 40 45 50

Time

0

0.5

1

1.5

2

2.5

C
o
s
t
F

u
n

c
ti
o
n

Cost function of Agent A

Cost function of Agent B

Cost function of Agent C

Cost function of Agent D

Cost function of Agent E

Cost function of Agent F

0 5 10 15 20 25 30 35 40 45 50

Time

0

1

2

3

4

5

6

7

8

9

10

G
lo

b
a
l
C

o
s
t

F
u
n

c
ti
o

n

JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 22, No. 2, December 2022

Cooperative Line Formation Control of Multi-Agent Systems Based on Least Squares Estimation • 77

Figure 9. Initial position of agents in source-seeking

Figure 10. Trajectory of agents doing source seeking in line formation

V. CONCLUSION

In this paper, we have described the problem of

multi-agent formation control. We constructed local

cost function based on the residue of least squares

estimation, which each agent performs. The global cost

function, which is the sum of all agents’ local cost

functions, is then used in distributed optimization. We

proposed a subgradient algorithm to minimize the local

cost function of each agent. We validated our approach

using numerical simulation. It is shown that the

algorithm successfully created line formation given the

graph is connected and each agent has at least two

neighbors. We also tested this algorithm in a multi-

agent source-seeking missions, and it kept the agents in

line formation accordingly. We believe our result is a

promising approach to be applied in various multi-agent

missions requiring line formation.

DECLARATIONS

Conflict of Interest

The authors have declared that no competing interests

exist.

CRediT Authorship Contribution

Samratul Fuady and Arumjeni Mitayani are the main

contributors of this paper. Samratul Fuady: Conceptualization,

Visualization, Writing - Original Draft, Writing - Review &

Editing; Arumjeni Mitayani: Conceptualization, Visualization,

Writing - Original Draft, Writing - Review & Editing; Ario

Birmiawan Widyoutomo, Arief Suryadi Satyawan, Alexander

Christantho Budiman, Suyoto, and Mochamad Mardi Marta

Dinata: Conceptualization, Writing - Review & Editing.

Funding

Research reported in this publication was supported by

DIPA BRIN and LPDP.

REFERENCES

[1] N. Jabeur, T. Al-Belushi, M. Mbarki, and H. Gharrad, “Toward

leveraging smart logistics collaboration with a multi-agent
system based solution,” Procedia Comput. Sci., vol. 109, no.

2016, pp. 672–679, 2017, doi: 10.1016/j.procs.2017.05.374.

[2] N. R. Gans and J. G. Rogers, “Cooperative multirobot systems
for military applications,” Curr. Robot. Reports, vol. 2, no. 1,

pp. 105–111, 2021, doi: 10.1007/s43154-020-00039-w.

[3] A. Degas, E. Kaddoum, M. P. Gleizes, F. Adreit, and A.
Rantrua, “Cooperative multi-agent model for collision

avoidance applied to air traffic management,” Eng. Appl. Artif.

Intell., vol. 102, no. May, p. 104286, 2021, doi:
10.1016/j.engappai.2021.104286.

[4] S. Chen, Y. Leng, and S. Labi, “A deep learning algorithm for

simulating autonomous driving considering prior knowledge
and temporal information,” Comput. Civ. Infrastruct. Eng., vol.

35, no. 4, pp. 305–321, 2020, doi: 10.1111/mice.12495.
[5] S. He, T. Wang, and S. Wang, “Load-aware satellite handover

strategy based on multi-agent reinforcement learning,” 2020

IEEE Glob. Commun. Conf. GLOBECOM 2020 - Proc., 2020,
doi: 10.1109/GLOBECOM42002.2020.9322449.

[6] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo,

“Multi-agent deep reinforcement learning-based trajectory
planning for multi-uav assisted mobile edge computing,” IEEE

Trans. Cogn. Commun. Netw., vol. 7, no. 1, pp. 73–84, 2021,

doi: 10.1109/TCCN.2020.3027695.
[7] F. Chen and W. Ren, “On the control of multi-agent systems: a

survey,” Found. Trends Syst. Control, vol. 6, no. 4, pp. 1–164,

2019, doi: 10.1561/260-000-0019.

[8] M. M. Gulzar, S. T. H. Rizvi, M. Y. Javed, U. Munir, and H.

Asif, “Multi-agent cooperative control consensus: a comparative

review,” Electron., vol. 7, no. 2, 2018, doi:
10.3390/electronics7020022.

[9] H.-S. Ahn, Formation Control: Approaches for Distributed

Agents. 2019. doi: 10.1007/978-3-030-15187-4.
[10] Y. P. Pane, S. Fuady, and K. Mutijarsa, “Overtaking in

centralized multi robot formation control based on pedestrian

behavior,” Proc. - UKSim 15th Int. Conf. Comput. Model.
Simulation, UKSim 2013, pp. 271–276, 2013, doi:

10.1109/UKSim.2013.146.

[11] H. Chu, J. Chen, D. Yue, and C. Dou, “Observer-based
consensus of nonlinear multiagent systems with relative state

estimate constraints,” IEEE Trans. Syst. Man, Cybern. Syst.,

vol. 50, no. 7, pp. 2456–2465, 2020, doi:
10.1109/TSMC.2018.2818172.

[12] Y. H. Choi and D. Kim, “Distance-based formation control with

goal assignment for global asymptotic stability of multi-robot
systems,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2020–

2027, 2021, doi: 10.1109/LRA.2021.3061071.

[13] S. Fuady, A. R. Ibrahim, and B. R. Trilaksono, “Comparative
experimental study of formation control of mobile robots,”

Procedia Technol., vol. 11, no. Iceei, pp. 689–695, 2013, doi:

10.1016/j.protcy.2013.12.246.
[14] A. Nedić and A. Ozdaglar, Cooperative distributed multi-agent

optimization, vol. 9780521762. 2009. doi:

10.1017/CBO9780511804458.011.
[15] W. Wu, I. D. Couzin, and F. Zhang, “Bio-inspired source

seeking with no explicit gradient estimation,” in Proc. 3rd IFAC

Work. Distrib. Estim. Control Networked Syst., 2012, vol. 45,
no. 26, pp. 240–245. doi: 10.3182/20120914-2-US-4030.00024.

-80 -60 -40 -20 0 20 40 60 80

-80

-60

-40

-20

0

20

40

60

80

A

B

C

D

E F

