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Abstract 

In this paper, we consider the problem of multi-agent systems where each agent aims to establish a line formation in a 

distributed manner. In constructing an efficient line formation, finding a line with the closest total distance from every agent is 

essential. We propose a formation control using least squares estimation (LSE) performed by each agent with only the local 

information that consists of the corresponding agent’s and neighbors’ positions. Each agent calculates the local cost function, 

which is the squared distance from the LSE line to the related agent’s and its neighbors’ positions. Our goal is to minimize the 

global cost function, which is the sum of these local cost functions. To achieve this, we employ distributed optimization to the 

global cost function of the overall system using the subgradient method performed by each agent locally. We evaluate our 

proposed method using numerical simulation, and the result complies with our goal of this paper.  
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I. INTRODUCTION 

Lately, the tasks performed by autonomous agents 

are becoming more complicated. Forcing an individual 

agent to achieve a complex mission is costly and 

impractical, and sometimes impossible. For example, in 

logistic transportation [1], using an individual agent to 

deliver heavy and numerous objects will require 

massive  and expensive equipment. Meanwhile, if the 

goods are split and transported by multiple agents, each 

agent will only need a simple requirement that is easier 

to implement. Consequently, research on multi-agent 

systems has received much attention in recent years. 

Multi-agent systems have been deployed in various 

applications, such as military [2], air traffic control [3], 

autonomous vehicle [4], satellite [5], communication 

[6], and logistic transportation, as mentioned previously. 

There are multi-agent systems approaches: centralized 

and distributed [7]. The centralized approach, there is 

one centralized unit or agent acting as a leader that can 

oversee and direct all other agents in the system. 

Meanwhile, in the distributed approach, there is no 

hierarchical structure amongst the agents, i.e., all agents 

have the same level of autonomy and make decision 

based on their local information. In this paper, we use 

the latter approach because in the centralized approach, 

the system will potentially collapse if the central agent 

malfunctions. The multiple agents in our system share 

the information with the adjacent agents, called 

neighbors. The agents can share the information 

containing the parameter of interest, for example, 

location, sensor reading, and other parameters 

depending on the application. Multi-agent systems 

working cooperatively under a particular coordination 

scheme have many advantages over single-agent 

systems, such as reducing complexity and availability of 

redundancy.  

There are some issues regarding multi-agent 

systems: coverage, consensus, navigation, and 

formation control [8], however, this paper will focus on 

formation control, and the other issues are out of this 

paper’s scope. Formation control is adapting the 

formation behavior of nature [9], such as schools of 

fish, flocks of birds, the swarm of ants, and many other 

animals staying in formation, as well as pedestrian 

behavior in humans [10]. In this case, animal formation 

has many benefits, such as conserving energy, retreating 

from predators, and keeping connectedness. Similarly, 
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the agents in multi-agent systems also adapt those 

animals’ behavior in making a formation. The benefits 

as mentioned above are what agents in the systems are 

expected to achieve. Thus, with formation control, the 

agents can save their energy, increase systems’  

robustness and efficiency , and keep their connectedness 

[11]. 

One of the most used structures of formation 

control is the line-based formation which will be 

referred to as line formation because of its simplicity 

and applicability in a lot of applications. For example, 

in military applications, military robots need to form 

platoon lines to execute missions efficiently for both 

attacking and defending while keeping communication 

intact. In this formation, the agent must create and 

maintain line arrangements during their mission. There 

are several approaches to forming a formation in multi-

agent systems, such as distance-based [12], virtual 

structure [13], etc. In this paper, to obtain the line for 

achieving the desirable formation, we propose least 

squares estimation (LSE) based line formation control 

as it is intuitively the most efficient way to obtain a line 

with the shortest total distance from every agent. In 

application, it will imply the energy and time efficiency 

of the proposed system. To the best of the authors’ 

knowledge, this paper is the first to propose LSE as the 

approach for line formation control. 

LSE is usually performed when we have all the data 

points. However, in this case, each agent will need to 

perform LSE based on its local data, which can generate 

different results from each agent. Thus, in this paper, we 

use distributed optimization [14] to have all the agents 

agree on the optimal line based on the local data. 

This paper is organized as follows. We describe the 

problem formulations in Section II. Then, we explain 

the proposed algorithm in section III. In section IV, we 

show the simulation result of the proposed algorithm. 

We finally conclude our work in Section V.  

II. PROBLEM FORMULATION 

In this section, we describe the setup of the problem 

and provide some notations related to the problem set. 

Furthermore, we also elaborate on the LSE we use in 

the problem. 

A. Graph Notions 

Consider a multi-agent system with 𝑛 agents which 

interact with each other through a network described as 

an undirected graph 𝒢 = (𝒱, 𝜀) where 𝒱 = {1,2,3, … , 𝑛} 
is the node set and 𝜀 ⊂ 𝒱 × 𝒱 is the undirected edge set. 

The edge (𝑖, 𝑗) ∈ 𝜀 means that agents 𝑖 and 𝑗 can 

exchange information (or 𝑖 and 𝑗 are neighbor). For each 

node 𝑖, we denote its neighbor set by 𝒩𝑖 ⊂ 𝒱 and total 

number of neighbors of agent 𝑖 is written as |𝒩𝑖|. 
The adjacency matrix 𝒜 = [𝑎𝑖𝑗] ∈ ℝ𝑛×𝑛, which 

describes connection between agents of graph 𝒢, is 

defined as 𝑎𝑖𝑗 = 𝑎𝑗𝑖 > 0 if (𝑖, 𝑗) ∈ 𝜀 where 𝑖 ≠ 𝑗 and 

𝑎𝑖𝑗 = 0 otherwise. The Laplacian matrix ℒ = [𝑙𝑖𝑗] ∈

ℝ𝑛×𝑛, which is the representation of graph 𝒢, is defined 

as 𝑙𝑖𝑖 = ∑ 𝑎𝑖𝑗𝑖≠𝑗  and 𝑙𝑖𝑗 = −𝑎𝑖𝑗 where 𝑖 ≠ 𝑗. A square 

matrix 𝒫 is called a stochastic matrix when its 

components 𝑝𝑖𝑗  are nonnegative and each sum of the 

row of 𝒫 is equal to 1, and it is doubly stochastic when 

both 𝒫 and 𝒫𝑇 are stochastic matrices.  

The dynamics of each agent are described as 

discrete-time single-integrator dynamics, which is 

shown in (1),  

 𝑟𝑖(𝑘 + 1) = 𝑟𝑖(𝑘) + 𝑢𝑖(𝑘),    𝑖 = 1,2, … , 𝑛.  (1) 

where 𝑟𝑖 = [
𝑥𝑖

𝑦𝑖
] ∈ ℝ2 represent the agents’ position in 

two-dimensional plane, and 𝑢𝑖 is the control signal of 

agent 𝑖. 

B. Least Squares Estimation (LSE) 

We consider the problem when each agent performs 

LSE based on its local information. Our parameter of 

interest in this case is the agent’s position on the plane, 

which is given by 𝑟𝑖 = [
𝑥𝑖

𝑦𝑖
]. Each agent can only 

communicate its position to its neighbors. 

Consider each agent has dataset 𝑥�̃� ∈ ℝ|𝒩𝑖|+1  

consisting of 𝑥𝑖 and 𝑥𝑗 , 𝑗 ∈ 𝒩𝑖  and 𝑦�̃� ∈ ℝ|𝒩𝑖|+1 

consisting of 𝑦𝑖  and 𝑦𝑗 , 𝑗 ∈ 𝒩𝑖 . We can see that each 

agent’s dataset contains its own position and its 

neighbors’ positions. For LSE problem, we define 𝑋�̃� =

[𝑥�̃� 𝟏] where 𝟏 = [1 … 1]𝑇 ∈ ℝ|𝒩𝑖|+1. Suppose 𝑦�̃� 

is an 𝓂 vector and 𝑋�̃� an 𝓂 × 𝓃 matrix with linearly 

independent columns. Then there is a unique 𝓃 vector 𝛾�̂� 

which minimizes ‖𝑦�̃� − 𝑋�̃�𝛾𝑖‖ over all 𝛾𝑖 (the norm 

taken as the Euclidean m-space norm). In our multi-

agent system, 𝓂 is equal to |𝒩𝑖| + 1 and with 𝓃 is 

equal to 2, the LSE will result first degree polynomial, 

which is a line. Another value of 𝓃, for example, 3 or 

more, will result second and higher degree polynomial, 

which is not a straight line we are looking for. The 

analytical 𝛾𝑖 which is 𝛾�̂� can be calculated as (2). 

𝛾�̂� = (𝑋�̃�
𝑇
𝑋�̃�)

−1

𝑋�̃�
𝑇
𝑦�̃�  (2) 

From (2) we can have the LSE parameter for each 

agent. For illustration, we have six agents with the 

positions and network topology shown in Figure 1. The 

agents’ positions are represented in labeled dots and the 

black lines that connect one agent to another agent 

represent network topology. The adjacency matrix in 

this case is given by (3). 

𝒜 = 

[
 
 
 
 
 
0 1 1
1 0 1
1 1 0

1 0 0
1 0 1
0 1 1

1 1 0
0 0 1
0 1 1

0 1 0
1 0 1
0 1 0]

 
 
 
 
 

        (3) 

As we can see, agent A has three neighbors: agent 

B, agent C, and agent D. Based on its local information, 

which is the position of its three neighbors and itself, 

agent A performs LSE, and the result is the red line. 

Similarly, agent B, which has four neighbors: agent A, 

agent C, agent D, and agent F, performs LSE and result 

the yellow line. This process is also performed by other 

agents in the system simultaneously. The resulting LSE 

for each agent is shown in corresponding color in Figure 

1. 
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Figure 1. LSE calculated by each agent based on its local information. 
 

Clearly, we can see that the resulting line is 

different from one agent to the other agents. This is 

because the total information that is received by each 

agent is different depending on its neighbors. Our goal 

is to have all agents agree on the same line, which will 

be the base line for the formation. 

III. DISTRIBUTED OPTIMIZATION 

In this part, we will describe the method we 

develop to solve the problem mentioned in the previous 

section. 

A. Distributed Subgradient Method 

A distributed algorithm for minimizing the sum of 

convex functions has been introduced in [14]. In this 

method, each agent executes the update rule that 

consists of the consensus step and subgradient step, as 

given in (4). 

 

𝑥𝑖(𝑘 + 1) = ∑𝑝𝑖𝑗𝑥𝑗(𝑘) − 𝑠𝑑𝑖(𝑘)

𝑗∈𝒱

 (4) 

 

where 𝑥𝑖(𝑘) is the position of agent 𝑖 at time 𝑘, 𝑝𝑖𝑗  is 

the element of Perron Matrix, a doubly stochastic matrix 

corresponding to the network topology, 𝑠 is the stepsize 

of gradient (or subgradient) descent step, and 𝑑𝑖(𝑘) is 

the gradient (or subgradient) of the cost function 𝐽𝑖 
computed at 𝑥𝑖(𝑘). This algorithm is proven to 

converge to minimizer as long as the graph is connected 

with the convergence rate given by (5) (see [14] 

Theorem 1.3). 

𝐽(𝑥�̂�(𝑘)) ≤ 𝐽∗ +
𝑠𝐷2𝐶

2
+

4𝑛𝐷

𝑘𝛽(1 − 𝛽)
∑‖𝑥𝑗0‖

𝑗∈𝒱

 

+
𝑛

2𝑠𝑘
(𝑑𝑖𝑠𝑡(𝛼, 𝑋∗) + 𝑠𝐷)2 

(5) 

 

where 𝐽∗ is the optimum cost function, 𝑋∗ is the optimal 

solution, 𝑥�̂�(𝑘) =
1

𝑘
∑ 𝑥𝑖(𝜏)

𝑘
𝜏=1 , 𝐷 is bound for 

subgradient, 𝑛 is number of agents, 𝐶 = 1 + 8𝑛(2 +
𝑛

𝛽(1−𝛽)
), 𝛽 = 1 −

𝜂

4𝑛2, 𝜂 is lower bound for 𝑝𝑖𝑗 > 0, and 

𝛼 =
1

𝑛
∑ 𝑥𝑖(0)𝑛

𝑖=1 . 

When the number of iterations goes to infinity, the 

last two terms of (5) become zero. We can see that the 

accuracy of this algorithm depends on the step size, the 

upper bound of the cost function gradient, and also the 

number of agents. 

B. Proposed Cost Function 

We introduce the local cost function for agent 𝑖 as 

the residue from the LSE. The residue is the vertical 

distance between the agents and the LSE line, which 

will be referred to as LSE residue as shown in Figure 2 

with the example of agent A and its neighbors: agent B, 

agent C, and agent D, identical to the example we 

mention in subsection II.B. Local cost function is then 

calculated as the sum of LSE residue of corresponding 

agent and its neighbors with respect to the LSE line 

which can be calculated as (6). 

𝐽𝑖(𝑥, 𝑦) = ‖𝑦�̃� − 𝑋�̃�𝛾�̂�‖
2
 

 

𝐽𝑖(𝑥, 𝑦) = ‖[𝐼 − 𝑋�̃� (𝑋�̃�
𝑇
𝑋�̃�)

−1

𝑋�̃�
𝑇
] 𝑦�̃�‖

2

 
(6) 

 

Note that the local cost function will become zero, 

i.e., 𝐽𝑖(𝑥, 𝑦) = 0 when the corresponding agent and its 

neighbors are forming a line, as shown in Figure 3 for 

the case of agent A. 

To optimize the multi-agent system, we need to 

minimize the cost function of all agents, which is the 

sum of the local cost function from each agent in (6) as 

described in (7). 

𝐽(𝑥, 𝑦) = ∑ 𝐽𝑖(𝑥, 𝑦)

𝑛

𝑖=1

 
(7) 

 

When all agents in (7) are aligned, as shown in 

Figure 4, we find the total cost function, 𝐽(𝑥, 𝑦) = 0. 

So, by solving the optimization problem for (7), we will 

achieve a line formation based on LSE, i.e., LSE-based 

agreement of all agents in the system. Furthermore, 

because each agent performs the local calculation not in 

a centralized manner, we can solve it using distributed 

optimization method. 

To solve this distributed optimization problem, we 

need to investigate the convexity of our cost function. 

Let us first consider the local cost function in (6) for an 

agent having three information (2 from its neighbors 

and one from itself), which is denoted as 𝐽1(𝑥, 𝑦) and can 

be calculated in (8). 

𝐽1(𝑥, 𝑦)

=
(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2)

2

(𝑥1 − 𝑥2)
2 + (𝑥2 − 𝑥3)

2 + (𝑥3 − 𝑥1)
2

 
(8) 

 

where (𝑥1, 𝑦1) denotes the position of the corresponding 

agent itself, while (𝑥2, 𝑦2) and (𝑥3, 𝑦3) represent the 

positions of its neighbors. The cases for a bigger 

number of information can be generalized from (8). It is 

important to note that this is the minimum number of 

local information because if the agent does only have 

two pieces of information (from itself and one 

neighbor), these two points will be a line, i.e., the cost 

function will be zero at all times, which is not enough to 

create an agreement  with other agents. In the case when  
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Figure 2. The distance from agent A and its neighbors to LSE line 

performed by agent A. 
 

 
Figure 3. Case when agent A and its neighbors are forming a line. 

 

 

Figure 4. Case when all agents in the system are forming a line. 

 

the agent has only one piece of information (only from 

itself), it means the agent is disconnected from the 

group, which also makes agreement impossible. So, the 

necessary condition for each agent is to have at least 

two neighbors.  

As we analyzed the Hessian matrix of (8), we found 

that it is not a positive semidefinite matrix for all (𝑥, 𝑦), 

which implies that the cost function (8) is not a convex 

function. Moreover, due to its denominator, this cost 

function is also difficult to analyze. So, we propose 

some modifications to this local cost function without 

losing the objective of the cost function itself. We can 

obtain the new cost function in (9) by multiplying the 

cost function with its denominator. 

𝐽1(𝑥, 𝑦) = (𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1

+ 𝑥2𝑦3 − 𝑥3𝑦2)
2 

(9) 

 

We can see that 𝐽1(𝑥, 𝑦) = 0 if and only if the agent 

with its neighbors forms a line, which suits our 

objective. As we analyze the Hessian matrix of (9), this 

new cost function still does not have a positive 

semidefinite Hessian matrix for all (𝑥, 𝑦), which means 

it is not a convex function. But it has some properties 

that are very useful for us. 

We first look at the gradient of 𝐽1(𝑥, 𝑦) with respect 

to 𝑥1 as written in (10). 

𝜕𝐽1(𝑥, 𝑦)

𝜕𝑥1

= 2(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1

+ 𝑥2𝑦3 − 𝑥3𝑦2)(𝑦2 − 𝑦3) 

(10) 

 

Equation (10) becomes zero in two cases if the agent 

and its neighbors are on a line or if 𝑦2 = 𝑦3. By 

evaluating the gradient of 𝐽1(𝑥, 𝑦) with respect to other 

variables, e.g., 𝑥2, 𝑥3, 𝑦1, 𝑦2, and 𝑦3, we can see that all 

the gradient becomes zero if and only if the agent and 

its neighbor form a line or they are in the same point 

(𝑥1 = 𝑥2 = 𝑥3 and 𝑦1 = 𝑦2 = 𝑦3) which can also be 

considered as forming a line. 

According to Fermat’s theorem, we can infer that 

from these findings, for local cost function (9), there is 

no local minimum except for the case when a line is 

formed by the agent and its neighbors. Moreover, there 

always exists a path from one local minimum to another 

local minimum where agents keep aligned, i.e., stay in 

the local minimum. This implies the local minimum is 

next to each other, creating a minimum local area. So, 

the local cost function (9) is monotonically decreasing 

until minimum local area and then monotonically 

increasing afterward, which is close to the convex 

function. 

Following from the case of three information, the 

cost function for agents with bigger number of 

neighbors can be generalized as (11). 

𝐽𝑖(𝑥, 𝑦) =

(

 ∑ (𝑥𝑝 − 𝑥𝑞)
2

𝑝,𝑞∈𝒩𝑖∪𝑖
𝑝≠𝑞 )

 ‖[𝐼

− 𝑋�̃� (𝑋�̃�
𝑇
𝑋�̃�)

−1

𝑋�̃�
𝑇
] 𝑦�̃�‖

2

 

(11) 

 

Consequently, the global cost function to be 

minimized is (12), which is the sum of local cost 

function (11). 

𝐽(𝑥, 𝑦) = ∑𝐽𝑖(𝑥, 𝑦)

𝑛

𝑖=1

 (12) 

C. Gradient-Based Algorithm 

Based on the cost function in (12), we design an 

algorithm to minimize the global cost function. It is 

clear that the minimum value of the global cost function 

is 0 and it happens only when all agents form a line. 

Because the local cost function is a non-negative 
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function, this condition will be achieved when all local 

cost function in (11) is zero, which is when all agents 

form a line with their own neighbors. With the 

properties of the local cost function described in 

subsection III.B, optimization can be done by 

minimizing each local cost function by each agent using 

the subgradient descent method as described in 

subsection III.A. 

Consider the distributed subgradient update rule in 

(13),  

𝑢𝑖(𝑘) = −𝑠

[
 
 
 
 
Δ𝐽𝑖
Δ𝑥𝑖

Δ𝐽𝑖
Δ𝑦𝑖]

 
 
 
 

 (13) 

 

where Δ𝐽𝑖 = 𝐽𝑖(𝑥(𝑘), 𝑦(𝑘)) − 𝐽𝑖(𝑥(𝑘 − 1), 𝑦(𝑘 − 1)),  

Δ𝑥𝑖 = 𝑥𝑖(𝑘) − 𝑥𝑖(𝑘 − 1),  Δ𝑦𝑖 = 𝑦𝑖(𝑘) − 𝑦𝑖(𝑘 − 1) 
and 𝐽𝑖(𝑥(𝑘), 𝑦(𝑘)) can be obtained from (11) with 

(𝑥(𝑘), 𝑦(𝑘)) is the instantaneous position at time step 𝑘. 

The update rule in (13) can be easily applied in 

each agent locally based on agents’ dynamics in (1). 

Note that the update rule in (13) does not consider the 

distance between agents. This problem will need further 

proof and analysis, which is out of the scope of this 

paper. We provide the simulation results of this in the 

next section. 

IV. SIMULATION RESULTS 

In this section, we evaluate the proposed methods 

through a simulation. We examine the update rule (13) 

for the case of six agents with network topology shown 

in Figure 5. We can see that the graph is connected, and 

every agent has at least two neighbors. The adjacency 

matrix for this case is already written in (2).   The initial 

position in the two-dimensional plane is 𝑟(0) =

[
1 2 2 1 3 3
2 2 1 4 2 1

]. We set the step size parameter s 

= 0.05. 

From Figure 6(a), we can see that, each agent has 

different LSE at the beginning as shown in colored 

lines. After we run the algorithm in each agent, we can 

see that the LSEs from each agent are getting closer 

(Figure 6(b)-(c)) and finally coincide into one line, i.e., 

all agents agree in the same LSE and establish a line 

formation as shown in Figure 6(d). The local cost 

function for each agent (𝐽𝑖) and the global cost function 

(𝐽) is shown in Figure 7 and Figure 8, respectively. By 

applying the update rule in (13), we can see that the cost 

function is consistently goes down and goes to 

minimum after 34-time steps.   

We also test this algorithm in constructing line 

formation for source-seeking missions. The agents are 

placed in the signal field area and need to locate their 

source. The initial positions of agents are shown in 

Figure 9.  

We combine our LSE-based line formation control 

with the source seeking and obstacle avoidance control 

from [15], and the resulting trajectory is shown in 

Figure 10. As we can see, the multi-agent systems 

successfully locate the source of signal field and 

maintain the line formation during the mission.  

 
Figure 5. Network topology and positions of the agents. 

 

 
Figure 6. Agents’ position and its corresponding LSE at (a) initial 

condition; (b) 10-time steps; (c) 20-time steps; and (d) 40-time steps. 

 

 
Figure 7. Local cost function of each agent. 

 
Figure 8. Global cost function.
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Figure 9. Initial position of agents in source-seeking 

 
Figure 10. Trajectory of agents doing source seeking in line formation 
 

V. CONCLUSION 

In this paper, we have described the problem of 

multi-agent formation control. We constructed local 

cost function based on the residue of least squares 

estimation, which each agent performs. The global cost 

function, which is the sum of all agents’ local cost 

functions, is then used in distributed optimization. We 

proposed a subgradient algorithm to minimize the local 

cost function of each agent. We validated our approach 

using numerical simulation. It is shown that the 

algorithm successfully created line formation given the 

graph is connected and each agent has at least two 

neighbors. We also tested this algorithm in a multi-

agent source-seeking missions, and it kept the agents in 

line formation accordingly. We believe our result is a 

promising approach to be applied in various multi-agent 

missions requiring line formation.  
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