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Abstract 

Collision is the main issue in safe transportation, including in the railway system. Sensor systems have been developed to 

detect obstacles to prevent a collision, such as using cameras. One disadvantage of the camera systems is that performance detection 

decreases in a not clean environment, like the target position behind the fogs. This paper discusses the development of frequency 

modulated continuous wave (FMCW) radar signal processing for high-speed railway collision avoidance. The development of 

radar signal processing combines a two-dimensional constant false alarm rate (2D-CFAR) and robust principal component analysis 

(RPCA) to detect moving targets under clutter. Cell average (CA) and Greatest of CA (GOCA) CFAR are evaluated under a 

cluttered wall environment along the railway track. From the experiment, the development of FMCW radar can detect stationary 

or moving obstacles around 675 meters in front of the locomotive. Combining 2D-CFAR and RPCA algorithm outperforms average 

background subtraction in extracting moving targets from strong clutter signals along the railway track. 
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I. INTRODUCTION 

Developing sensor technology to minimize collision 

is mandatory in transportation systems, including the 

railway system. Train collisions are caused by cracked 

tracks, a collision between trains and obstacles, or a 

collision between trains on the same track. Combining 

position sensors such as GPS and wireless 

communication has been developed to prevent a collision 

[1]-[4]. The train position is reported between trains, train 

and control centers through wireless communication 

networks such as GSM and Wi-Fi. The performance of 

this system depends on GPS accuracy and GSM or Wi-

Fi networks along railway tracks. In another way, 
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cameras and range sensors have been developed to detect 

railway track obstacles [5]-[8]. The image processing 

technique and machine learning identify obstacles along 

the railway track. The result shows that the system can 

detect obstacles in a clean environment within a specific 

range. While in [9], 3D-Lidar Internet of Thing (IoT) is 

used for surveillance systems in the railway crossing 

area. Vision sensor performance mentioned above 

depends on environmental conditions, such as decreasing 

performance detection when obstacles inside fog and is 

limited in detection range. 

A radar system is one of the detection systems 

developed to overcome the problem mentioned above. 

Radar application in railway systems has advantages in 

long-range detection, insensitivity to weather conditions, 

and good accuracy and resolution [10]. Frequency 

modulated continuous wave (FMCW) is one type of radar 

with advantages in accuracy for short-range 

measurements, low sensitivity to noise/clutter 

interference, and low power consumption. Implementing 

a radar system for railway collision avoidance has been 

introduced in [11]. The system detection consists of radar 

and a camera to improve obstacle performance detection. 

Kalman filter tracks a target and achieves a detection 

range up to 600m.  

In railway collision avoidance systems, in a case due 

to obstacles or trains on the same track, the minimum 

obstacle detection range is a primary concern behind the 

engine brake system. This minimum detection range 

guarantees that the engine braking system can handle the 

train to stop in safe conditions. The minimum range 

detection for high-speed trains with a 300 km/ hour 

velocity is 2700 m [12]-[13]. Radar system design to 

meet that requirement is still challenging in recent years. 

In [12], introduce radar system design with a multiple 

receiver antenna with a minimum detection range of 3000 

meters to prevent a collision. That system achieves a 

detection range up to 1000m with cell averaging constant 

false alarm rate (CA-CFAR) as the detection algorithm. 

With multiple receiver antenna, it implies to complexity 

algorithm and needs more cost. 

The minimum range detection is a mandatory 

requirement to prevent a collision. Conversely, the 

targets are usually mixed with a cluttered environment, 

such as clutter from building along the railway track. 

Clutter removal and moving target detection algorithms 

become primary issues in this field. CFAR algorithms 

commonly detect targets under noise and in cluttered 

environments. CA-CFAR is introduced to detect targets 

with low processing time and exemplary performance in 

a homogeneous environment [14] but poorly in a non-

homogeneous environment [15]. The greatest of CA 

(GOCA) CFAR is proposed to tackle detection 

performance in a non-homogeneous environment [16]. 

Moving target detection under clutter and noise is still a 

challenge. A moving target indication (MTI) filter 

introduce to detect a slow-moving target [17]. Slow-

moving target detection under a cluttered environment 

using robust principal component analysis (RPCA) is 

presented in [18], [19]. RPCA outperforms MTI due to 

RPCA can suppress clutter effectively and possibly 

prevent moving targets. The essential operation of RPCA 

is to extract a data matrix into a low-rank clutter matrix 

and a sparse moving targets matrix. 

This work is initial research to develop radar 

obstacle detection for a high-speed train in Indonesia. 

This paper focused on radar signal processing 

development to prevent a collision along the railway 

track. Two problems to be solved in this research are the 

minimum detection range of 3000 meters and clutter 

removal along the railway track. To achieve that, 

combining CFAR and RPCA is proposed. Two-

dimensional CFAR (2D-CFAR) is used to detect targets 

under noise clutter, while RPCA algorithm removes 

strong clutter that cannot be removed by CFAR 

processing. 

II. FMCW RADAR 

A. FMCW Radar Architecture 

In general, the development of FMCW radar for 

high-speed railway collision avoidance is shown in 

Figure 1. The FMCW radar consists of several main 

components such as a synchronized clock 50 Mhz, 

coupler, linear frequency modulated (LFM) chirp 

generator, power amplifier (PA), antennas, low noise 

amplifier (LNA), mixer, voltage gain amplifier (VGA), 

low pass filter (LPF), analog-to-digital converter (ADC) 

and personal computer (PC). LMF chirp generator 

produce saw tooth form with bandwidth of 54 MHz to 

achieve maximum detection range. LFM chirp generator 

based on phase lock loop (PLL) and voltage control 

oscillator (VCO) to create stability of chirp signal 

compared to uncontrolled VCO. PA is used to increase 

signal power in the radar transmitter by around 500 mW. 

The antenna receiver and transmitter are designed using 

a microstrip array with twenty patches for each antenna. 

The received signal from targets depends on the distance 

between targets and radar. Generally received signal is 

too low, and LNA is used to increase the received signal 

to a certain level. FMCW radar used beat frequency to 

determine the target range. The beat frequency is 

captured from the output I/Q mixer. The received signal 

in the I/Q form is digitalized using an analog-to-digital 

converter (ADC) board with 12 bits resolution. From the 

digitalized signal, pre-processing, range processing, 

target detector, and clutter removal are implemented to 

determine targets along a railway track. 

B. Constant False Alarm Rate (CFAR) 

The Constant False Alarm Rate (CFAR) is a basic 

detection algorithm applied to the received signal of the 

radar. This algorithm determines a fixed threshold based 

on the background noise. If any sample exceeds the 

estimated threshold level, it is declared as the target is 

present, and others are declared as the target is not 

present. The critical elements of a CFAR detector are 

illustrated in Figure 2.
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Figure 1. FMCW radar design system 

 

   
Figure 2. CFAR structure 

 

• The Cell Under Test (CUT) is where the threshold is 

to be applied based on which the target is declared 

present or not. 

• The guard cells (GC) are used to estimate the 

threshold in CUT precisely. 

• The samples reference cells are used for the 

estimation of the noise level, thereby helping in 

calculating the threshold. 

 

1) Cell Averaging CFAR (CA-CFAR) 

CFAR algorithms have many types; one generally 

used is cell averaging CFAR (CA-CFAR) [14]. CA-

CFAR has advantages in low complexity processing and 

better performance for single target detection in a 

homogenous environment. Calculating the CFAR 

constant or scale factor 𝛼𝐶𝐴 with the following formula 

as presented in (4) 
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2
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where 𝑃𝑓𝑎 denoted probability false alarm rate, and 𝑁 represent 

the total number of the reference cells. CA-CFAR threshold is 

calculated from averaging data of reference cell multiplied with 

scale factor. Form (4), the performance of CA-CFAR depends 

on determined 𝑃𝑓𝑎 value. In the detection system, the 

probability of detection (𝑃𝑑) value is indicated of detection 

probability of the target is present and can be calculated from 

signal to noise ratio (𝑆𝑁𝑅) value as (5) [20]. 

 

𝑃𝑑 = (1 +
𝛼𝐶𝐴

𝑁(1 + 𝑆𝑁𝑅)
)

−𝑁

 ( 5 ) 

  

2) Greatest of CA-CFAR (GOCA-CFAR) 

The greatest of CA-CFAR (GOCA-CFAR) was 

developed to improve the performance of CA-CFAR in a 

non-homogeneous environment [16]. The non-

homogeneous environment is caused by clutter from the 

surrounding area, such as reflections from buildings. 

Unlike CA-CFAR, the GOCA-CFAR algorithm takes the 

maximum value of average power between the leading 

and lagging window, as presented in (6). The relation 

between 𝑃𝑓𝑎 and the scaling factor 𝛼𝐺𝑂𝐶𝐴 is defined as (7) 

[17].  
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3) Two-dimensional CFAR 

A two-dimensional CFAR (2D-CFAR) algorithm is 

presented in [21] to achieve low computational 

complexity but still outperforms the detection of one-

dimensional (1D) CFAR in the radar data matrix (RDM). 

An RDM is composed of 𝑄 × 𝑅 data matrix, where 𝑄 and 



Development of FMCW Radar Signal Processing for High-Speed Railway Collision Avoidance •  43 
 

 
JURNAL ELEKTRONIKA DAN TELEKOMUNIKASI, Vol. 22, No. 1, August 2022 

 

 

𝑅 denote target range and doppler, respectively. 

Assuming that the B-scan or range profile image is 

similar to RDM but the doppler matrix is substituted with 

frame numbers, 2D-CFAR can be implemented for the 

B-Scan matrix. Unlike with 1D-CFAR, the reference 

window in 2D-CFAR contains  𝐾 × 𝐿 cells around the 

cell under test. The reference window is shifted in range 

and frame numbers direction. The size of 𝐾 × 𝐿 cells is 

an essential parameter of detection performance because 

those cells are used to estimate the noise floor for the cell 

under test. 2D-CFAR structure based on a B-scan image 

is presented in Figure 3. 

C. Robust Principal Component Analysis 

The robust principal component analysis (RPCA) 

technique focuses on a matrix's decomposition into a 

low-rank and sparse matrix. In recent years, RPCA has 

been used in ground penetrating radar (GPR) and 

synthetic aperture radar (SAR) applications to remove 

background noise [18], [19], [22]. A B-Scan or range 

profile image is composed of several A-Scan into a two-

dimensional matrix. Observed data matrix D from B-scan 

image data can be presented as 

 

𝑫 = 𝑳 + 𝑺 + 𝑵 (8) 

 

where  𝑳, 𝑺, and 𝑵 denote a low-rank matrix of clutter, a 

sparse matrix of moving targets, and a noise matrix, 

respectively.   

Matrix 𝑫 can be decomposed into a sparse matrix 

and a low-rank matrix using Go Decomposition (GoDec) 

algorithm, as presented by [18], [23]. 

 

{

𝑚𝑖𝑛
𝑳, 𝑺

‖𝑫 − 𝑳 − 𝑺‖𝐹
2

𝑠. 𝑡.  𝑟𝑎𝑛𝑘(𝑳) ≤ 𝑟,
𝑐𝑎𝑟𝑑(𝑺) ≤ 𝜀

 

(9) 

 

where ‖. ‖𝐹, 𝑟𝑎𝑛𝑘(. ), 𝑐𝑎𝑟𝑑(. ) denotes the 

Frobenius norm, the rank operator, and the cardinality of 

the sparse matrix, respectively. The variable  𝑟 represents 

rank of 𝑳 , while the variable 𝜀 represents the sparse 

degree of 𝑺. 

 

    
Figure 3. 2D-CFAR structure 

 

III. SYSTEM DESIGN 

A. Radar Parameters 

The radar target is modeled with a square aluminum 

plate with dimensions of 2.4 × 1.2 meters and a height of 

2.2 meters above the railway track from a center plate, as 

shown in Figure 4. Radar Cross Section (RCS) is the 

ability of a target to reflect the radar signal towards the 

source of the radar transmitter. The RCS value for a flat 

target surface following equation (10) is ± 1000 m2. The 

development of FMCW radar parameters is tabulated in 

Table 1. 

 

σmax  =
4πw2ℎ2

 λ2
 

(10) 

 

 

The maximum detection range of developed FMCW 

radar can be expressed as (11).  From (11), assuming 

𝑓𝑏𝑚𝑎𝑥 = 𝐹𝑠, the maximum detection range (𝑅𝑚𝑎𝑥) is 5.6 

km which is proper with a minimum detection range as 

described in [13], while the range resolution of the target 

is 2.7 m, calculated by equation (12). 
 

 

 
 

Figure 4. Model target 

 
TABLE 1  

FMCW RADAR SIGNAL PARAMETERS 

Parameter Value 

Bandwidth (𝐵𝑤) 54 MHz 

Max beat frequency (𝑓𝑏𝑚𝑎𝑥) = Sampling 

Frequency (𝐹𝑠) 

2.0833 MHz 

Carrier Frequency (𝐹𝑐) 9.3 GHz 

Number of samples (𝑁𝑠𝑎𝑚𝑝𝑙𝑒) 2048  

Number of sweeps (𝑁𝑠𝑤𝑒𝑒𝑝) 8  

Time sweep (𝑇𝑠𝑤𝑒𝑒𝑝) 983.04µs 

ADC resolution 12 bits 

Horizontal beamwidth 4.30 

Gain Antenna Tx, Rx 21.5 dB 

Sidelobe level 11.9 dB 

Antenna height above the railway track 1.6 m 
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𝑅𝑚𝑎𝑥 =
C × 𝑇𝑠𝑤𝑒𝑒𝑝 × f𝑏𝑚𝑎𝑥

2 × 𝐵𝑤
 

(11) 

 

∆R =
c

2 × Bw
 

(12) 

 

B. Radar Signal Processing 

This research divides radar signal processing into 

four main parts; pre-processing, range processing, 

detection, and post-processing, as presented in Figure 5. 

Raw data is collected from ADC 12-bits with a sampling 

rate of 2.0833 MHz. The total number of sample data in 

a single sweep is 2048. Collected data will be processed 

after eight sweeps. Pre-processing steps include dc 

removal and I/Q imbalance correction. DC component 

from the received signal is removed by the DC removal 

step, while I/Q imbalance correction is implemented to 

reduce mirror signal from unbalancing signal from the 

output I/Q mixer. After I/Q imbalance correction, range 

processing is done by Fast Fourier Transform (FFT) with 

2048 points.  

Implementing Hamming windows before the FFT 

function to reduce the side lobe signal. Data from FFT 

named A-scan are collected following recorded time to 

matrix 𝑄 × 𝑅 named B-Scan or range profile image. 

After B-Scan is composed, 2D-CFAR is applied to detect 

obstacles under noise and low clutter. In this research, 

2D-CA and 2D-GOCA CFAR performance is evaluated. 

Finally, robust principal component analysis is applied to 

reduce strong clutter that still exists after 2D-CFAR 

processing. 

 

 
Figure 5. Radar signal processing 

 

IV. RESULTS AND DISCUSSION 

A. FMCW Radar Modeling 

The detection performance of CFAR has been 

simulated based on radar parameters as tabulated in Table 

1. The simulation scenarios consist of a homogenous and 

non-homogenous environment to meet the actual 

condition of the railway track. Four objects are put in 

different locations (280 m, 400 m, 730 m, and 1000 m) 

not close to each other. CA and GOCA-CFAR processor 

are evaluated for both scenarios with SNR=15 dB and 

CFAR parameters set as follows: N = 16, GC = 2, P𝑓𝑎 =

1𝑒 − 1, as shown in Figure 9. In Figure 9(a), CA and 

GOCA CFAR perform well under a homogenous 

environment. In the second scenario, a clutter edge was 

added to the signal between the first and second objects. 

Clutter edge represents clutter signal from surrounding 

areas of railway track such as building and entrance 

station building. Figure 9(b) shows that GOCA 

outperforms CA-CFAR in a non-homogenous 

environment. CA-CFAR detect more clutter wall than 

GOCA-CFAR. Both CA and GOCA-CFAR performance 

depend on the selected reference window 𝑁 and 𝑃𝑓𝑎. In 

actual application, the trade-off between reference 

window 𝑁 and 𝑃𝑓𝑎 is needed to achieve optimum 

performance.  
 

 
(a) 

 

 
(b) 

Figure 6. Performance simulation of CA and GOCA-CFAR under (a) 

homogenous and (b) non-homogeneous environment
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B. FMCW Radar Detection 

In this work, the measurement setup has been 

conducted at Cipeuyeum Stasiun, Cianjur Regency, as 

shown in Figure 7. The radar antenna's height is 1.6m 

above the railway track. A target can move forward and 

backward along the railway track with a speed not 

exceeding 20 km/hour within a 3000 meters range. The 

measurement scenario is to detect a moving target along 

a railway track within a specific distance and direction.  

From the measurement setup, raw data are collected 

and analyzed with a radar signal processing algorithm, as 

shown in Figure 5. Figure 8 shows the range and 1D-

CFAR processing result of the collected data radar 

receiver. Strong-clutters exist in low-range detection 

areas due to environment building in the station. Both CA 

and GOCA-CFAR unwell performs to reduce strong 

clutter. Figure 8 shows that many clutter signals are 

detected for close and long-range areas along the railway 

track. Furthermore, target signals in close-range area 

detection are mixed with strong clutter, so it is not easy 

to detect using CFAR algorithm. RPCA algorithms 

proposed to overcome unwell performs CFAR in a strong 

clutter environment. 

Range profile image or B-Scan is used to analyze 

moving target detection. B-Scan is composed of several 

A-scan to a single image. In this research, 360 frames are 

collected to generate B-Scan. Figure 9 shows a range 

profile image from the moving target scenario. A moving 

target path is indicated with a slope line, while a clutter 

signal is represented with a straight line. Two-

dimensional CA and GOCA CFAR performance are 

analyzed to detect targets in B-scan; the result is shown 

in Figure 10. 2D-CA and GOCA CFAR parameters are 

set as follows: N = 16, GC = 2, P𝑓𝑎 = 1𝑒 − 0.8. Figure 

10 shows that 2D-CA and 2D-GOCA CFAR processing 

can detect a moving target at 250 cells equal to 250 × 

2.7m = 675m, where 2.7m is radar range resolution. 

However, strong clutters are still detected at under 50, 90, 

130, and 160 cells. 

A robust principal component analysis (RPCA) 

algorithm is implemented to overcome the strong clutters 

problem. RPCA extract B-scan matrix data to a low-rank  

  

 
Figure 7. Measurement set-up at Cipeuyeum station 

 

  
Figure 8. 1D-CFAR processing 

 

 
Figure 9. B-Scan or range profile image 

 

clutter matrix 𝑳, and a sparse matrix 𝑺 representing the 

moving target. By following equation (9), the result of 

2D-CFAR, as shown in Figure 10, is extracted into two 

component matrices. The final result of RPCA process is 

shown in Figure 11. Figure 11 (a) and (b) show sparse 

matrix 𝑺 after two-dimensional CA and CAGO CFAR 

processing, respectively. The sparse matrix 𝑺 shows a 

moving target, while extracted clutter is shown in Figure 

11(c) as a low-rank matrix 𝑳. The moving target in sparse 

matrix 𝑺 is sometimes not detected due to the received 

signal being too weak, and the railway track altitude is 

not the same point. In another way, the clutter removal 

performance of the average background subtraction 

algorithm is shown in Figure 12. Figure 12 shows that 

much clutter is still detected due to the amplitude power 

of clutter greater than the average background clutter 

power. At this point, RPCA can effectively extract a 

moving target from clutter with a limited condition, such 

as the target in slow motion in case the experiment use 

speed does not exceed 20 km/hour. For future research, 

more data should be collected with varying speeds up to 

300 km/hour to verify that algorithm can be implemented 

in a high-speed moving target. 
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(a) 

 

 
(b) 

Figure 10. 2D-CFAR performance (a) 2D-CA-CFAR, (b) 2D-GOCA-

CFAR 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 11. RPCA performance, (a) sparse matrix 𝑺 after 2D-CA-

CFAR, (b) sparse matrix 𝑺 after 2D-GOCA-CFAR, (c) low-rank 

matrix 𝑳 after 2D-CA-CFAR 

 

 
Figure 12. Clutter removal performance from combining 2D-CFAR 

and average background subtraction 

 

V. CONCLUSION 

FMCW radar signal processing for railway collision 

avoidance has been evaluated in various scenarios. From 

the analyzed data on simulation and actual measurement, 

performance detection depends on the signal-to-noise 

ratio and trade-off CFAR threshold under various 
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conditions. Combining 2D-CFAR and RPCA algorithms 

can extract moving targets under clutter effectively. From 

the measurement, the development of FMCW radar can 

detect an obstacle or target of 675 meters. The detection 

target range should be improved to 3000 meters for future 

research to meet the requirement of a safety braking 

system in a high-speed railway to prevent a collision.  
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