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Abstract 

Speech enhancement, which aims to recover the clean speech of the corrupted signal, plays an important role in the digital 
speech signal processing. According to the type of degradation and noise in the speech signal, approaches to speech enhancement 
vary. Thus, the research topic remains challenging in practice, specifically when dealing with highly non-stationary noise and 
reverberation. Recent advance of deep learning technologies has provided great support for the progress in speech enhancement 
research field. Deep learning has been known to outperform the statistical model used in the conventional speech enhancement. 
Hence, it deserves a dedicated survey. In this review, we described the advantages and disadvantages of recent deep learning 
approaches. We also discussed challenges and trends of this field. From the reviewed works, we concluded that the trend of the 
deep learning architecture has shifted from the standard deep neural network (DNN) to convolutional neural network (CNN), which 
can efficiently learn temporal information of speech signal, and generative adversarial network (GAN), that utilize two networks 
training. 
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I. INTRODUCTION 

Speech is used by humans as an intermediary tool for 
communication. Speech chain model consists of two 
stages, speech production and speech perception [1]. 
Speech production is when a speaker expresses an idea 
through speech. When it happens, there is a conversion 
from linguistic structure into a sound wave pressure. 
While speech perception is the process in the auditory 
system of a listener. The task is interpreting the sound 
wave pressure coming from the speaker. 

There has been a number of speech applications such 
as automatic speech recognition (ASR), spoken dialogue 
systems (e.g. voice dialing and data entry), digital 
hearing aids, etc. However, in real-world applications, 
speech signal is easily contaminated by external factors 
such as interference due to environmental noise, 
background noise, and reverberation. A listener often has 
difficulties understanding speech in the presence of these 
noises, especially when the signal-to-noise ratio (SNR) is 
at low level. Therefore, speech enhancement (SE) plays 
an important role in speech signal processing. SE is 
implemented to improve the intelligibility and quality of 
speech by removing noise from the corrupted speech 
signal [2]. The process of reducing the effects of noise is 
still very challenging in practice. 

Recent advance of deep learning technologies has 
provided great support for the progress in SE research 
field. Unlike conventional SE approaches that depend on 
statistical model, deep learning approaches build on a 
data-driven paradigm. Now conventional SE such as 
spectral subtraction [3], Wiener filtering [4], and 
minimum mean square error [5], have been outperformed 
by deep learning methods. The development of deep 
learning is one of the most significant technology 
nowadays, hence deserves a dedicated survey. Some 
deep learning models for SE are using mapping-based 
methods [6]–[27], while some others are using masking-
based methods [28]–[34]. 

Previously, there has been a lot of work presenting a 
survey in the speech field. The survey article by Zhang et 
al. [35] provides an extensive overview of relevant deep 
learning approaches, specifically for noise robust speech 
recognition task. A survey on audio-visual speech 
enhancement and separation based on deep learning is 
investigated by Michelsanti et al. [36]. The overview 
article by Das et al. [37] covers fundamentals of SE, but 
it only discusses deep learning based techniques in 
general. In this paper, we provide in detail a review of 
recent deep learning approaches that are designed to 
address SE task. We describe the advantages and 
disadvantages of these approaches. We also discuss 
challenges and trends of this field. Moreover, in order to 
carry this review, we selected papers which were 
published on the span of 8 years between 2012 and 2020. 
The query of ‘deep learning’ and ‘speech enhancement’ 
are used for the paper selection. 
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The remainder of this paper is organized as follows. 
Section II introduces the basic signal model and problem 
formulation of SE task. Section III reviews SE based on 
mapping and masking methods. Section IV presents the 
standard audio corpora and evaluation metrics that are 
frequently used. Section V describes deep learning-based 
SE methods. Finally, we provide conclusion, 
summarizing the challenges and trends of SE works 
presented in the paper. 

II. SIGNAL MODEL AND PROBLEM 

FORMULATION 

In real-world environments, speech signal is easily 
corrupted by noise. Noises, including reverberations, can 
be grouped into stationary noise (unchanging as a 
function of time) and non-stationary noise (changing 
when shifted in time). Example of background noise, 
which belongs to the non-stationary category, are street 
noise, train noise, babble noise (the voice of other 
speakers), and instrumental sounds. The relation between 
speech and noise in the time domain can be written as (1). 

                     𝑦ሺ𝑡ሻ ൌ 𝑠ሺ𝑡ሻ ∗ ℎሺ𝑡ሻ  𝑛ሺ𝑡ሻ, (1) 

where 𝑠ሺ𝑡ሻ is clean speech signal, ℎሺ𝑡ሻ is convolutional 
noise or room impulse response (RIR), 𝑛ሺ𝑡ሻ is additive 
noise, and 𝑦ሺ𝑡ሻ is noisy speech. Denoting 𝑥ሺ𝑡ሻ ൌ 𝑠ሺ𝑡ሻ ∗
ℎሺ𝑡ሻ as target speech, we can rewrite (1) as (2). 

                            𝑦ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ  𝑛ሺ𝑡ሻ. (2) 

Let 𝑡 be the time index. The signal can be 
represented as 𝑦 ൌ ሾ𝑦ሺ1ሻ, … , 𝑦ሺ𝑇ሻሿ where 𝑇 is the length 
of the utterance. When applying short-time Fourier 
transform (STFT), we can represent the acoustic signal 
model of (2) in the time-frequency (TF) domain as (3). 

                      𝑌ሺ𝑘, 𝑙ሻ ൌ 𝑋ሺ𝑘, 𝑙ሻ  𝑁ሺ𝑘, 𝑙ሻ, (3) 

where 𝑘 is the frequency bin index, 𝑙 denotes the time 
frame index, and 𝑌ሺ𝑘, 𝑙ሻ, 𝑋ሺ𝑘, 𝑙ሻ, and 𝑁ሺ𝑘, 𝑙ሻ are the 
STFT coefficients of the noisy speech signal, the target 
signal, and the noise signal, respectively. The definitions 
provided above are valid for single channel microphone. 
In this case, SE task is aimed at recovering the target 
speech signal 𝑥 from the noisy speech signal 𝑦. As for 
multichannel SE, the signal in the time domain is 
expressed as (4). 

          𝑦ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ  𝑛ሺ𝑡ሻ,     𝑚 ൌ 1,2, … , 𝑀.      (4) 

 where 𝑀 is the total number of microphone array. 

III. SPEECH ENHANCEMENT 

According to the type of degradation and noise in the 
speech signal, approaches to SE vary. They are 
commonly designed in supervised manner. Deep learning 
models should be trained using representative data that 
match with the testing condition. Thus, a large training 
data need to be collected in a wide variety of settings in 
order to have good performance. Practically, the systems 
are trained using a large amount of synthetic data. First, 

the data are generated by artificially adding the noise at 
several SNRs to the target speech. Pairs of corrupted and 
clean data are then presented to the model. In this way, 
supervised deep learning models can automatically learn 
to perform SE. Previous researches have shown the 
effectiveness of this method to improve speech quality 
and intelligibility.  

Previous works on SE applied their model either 
using cepstral (TF domain) or directly using raw signal 
(time domain). TF domain such as Mel-frequency 
cepstral coefficients (MFCC) [10], [18], [23], Mel-
spectrogram [7], [16], [24] and magnitude spectrogram 
[8], [12], [21], [22], [27], can  be  obtained  by applying  
STFT to the raw signal. These features are able to make 
the learning process easier and more generalized [38]. 
However, the limitation of utilizing spectral or cepstral 
representations is that it only uses magnitude spectrum 
and discards a potentially valuable phase spectrum. 
Hence, recent work is shifting from TF domain to time 
domain [14], [15], [17], [19], [20], [25]. This provides an 
opportunity to map the noisy speech to clean speech 
directly, which can retain the complete speech 
information including phase.  

Works that focus on removing noise of the derived 
features are commonly regarded as feature enhancement. 
On the other hand, works implemented on waveform 
domain are regarded as speech enhancement. In this 
review, we treat both of them as enhancement models as 
they often share similar algorithms. Figure 1 shows an 
overview of SE system. The boxes with dash line (i.e. 
STFT and inverse-STFT) are necessary to derive speech 
features. In the case of SE, the training targets are divided 
into two groups: mapping, and masking-based methods. 
These groups came from the perspectives of supervised 
learning problem. It is referred to regression problem if 
the target is to directly map the noisy speech to clean 
speech. While it is referred to as classification problem if 
the target is to estimate a matrix, known as a mask. The 
mask is applied as filter to the output to produce the 
enhanced clean speech signal [39]. 

A. Mapping-Based Method  

When using the mapping-based method, the target is 
to map a non-linear function 𝐹 from the noisy speech 
𝑦ሺ𝑡ሻ into the enhanced clean speech 𝑥ሺ𝑡ሻ, as written in 
(5). 

                                 𝑦ሺ𝑡ሻ
ி
→ 𝑥ሺ𝑡ሻ.    (5) 

Due to the fast-variation problems of using raw 
speech signal, mapping-based method is commonly 
applied to magnitude spectrogram of the speech signal 
(TF domain), which is created by applying STFT with 
time windowing responses of a filterbank. Then, the 
inverse operation of STFT is performed to reconstruct the  

 
Figure 1. Speech Enhancement System Overview. 
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spectrogram back to the time domain signal using the 
phase information from the original noisy speech. 
However, most recent works have performed this 
mapping approach on the time domain [14], [17], [19], 
[20], [25]. The mapping-based method is known to be 
less sensitive to SNR variations [40], thus it is more 
useful for application with a wide range of SNRs. 

Neural networks with mapping-based method are 
trained to reconstruct the target output from the observed 
input. The target output is obtained from the clean speech 
𝑥ሺ𝑡ሻ, while the observed input is extracted from the noisy 
speech 𝑦ሺ𝑡ሻ. Specifically, the neural network learns 𝐹 
function by minimizing the mean square error (MSE) loss 
between the input spectrogram and its reconstructed 
input, as described in (6). 

                        ℒெௌா ൌ  ‖𝑌 െ 𝐹ሺ𝑋ሻ‖ଶ, (6) 

or mean absolute error (MAE) loss between the input of 
raw speech signal and its reconstructed input, as 
expressed in (7). 

                        ℒொ ൌ  ‖𝑦 െ 𝐹ሺ𝑥ሻ‖,               (7) 

where ‖ . ‖ଶ is the square loss, and ‖ . ‖ is the absolute 
loss.  

B. Masking-Based Method 

When using the masking-based method, the target is 
to estimate a mask. This approach is implemented using 
magnitude spectrogram (TF domain), where the 
estimated mask is applied as filter to the input 
spectrogram. There are two most commonly used masks, 
ideal binary mask (IBM) and ideal ratio mask (IRM). In 
IBM, the frequency bins of the spectrogram that have 
high speech amplitude (local SNR is greater than a 
threshold 𝑅) are set to 1, while others with high noise 
intensity are set to 0, as described in (8). 

      𝐼𝐵𝑀ሺ𝑘, 𝑙ሻ ൌ  ൜
1, 𝑖𝑓 𝑆𝑁𝑅ሺ𝑘, 𝑙ሻ  𝑅,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,            

               (8) 

where 𝑘 and 𝑙 denote frequency bin and the time, 
respectively. 𝑅 is a threshold that classifies the value into 
1 or 0. The threshold value is chosen based on the 
experiment trials, however in previous work, it is stated 
that the best value is 5 dB lower than the SNR of noisy 
signal [41]. On the other hand, IRM, also known as soft 
masking, uses a probability value between 0 and 1, as 
written in (9). 

                 𝐼𝑅𝑀ሺ𝑘, 𝑙ሻ ൌ  ቀ
ሺ,ሻమ

ሺ,ሻమାேሺ,ሻమቁ
ఉ

,               (9) 

where 𝑋ሺ𝑘, 𝑙ሻଶ and 𝑁ሺ𝑘, 𝑙ሻଶ denote the speech and noise 
energy in TF domain, respectively. 𝛽 is a tunable 
parameter for mask scaling. 

IV. AUDIO CORPORA AND EVALUATION METRICS 

A large training data is one of the key aspects that 
allow the implementation of deep learning technology. 
The choice of a dataset is critical to compare the 

effectiveness of the different approaches. In this section, 
we introduce a set of existing resources that are listed in 
Table 1 and Table 2. These datasets are widely used in 
the field of SE. Some data such as Aurora-2, Voice Bank 
corpus, and some noise datasets, are publicly available on 
the website. 

Based on our survey, the most commonly used 
dataset is the noisy version of the Wall Street Journal 
(WSJ) [42], such as the CHiME series corpus. WSJ is 
originally a clean speech corpus. However, for the SE 
experiments, clean speech data is corrupted with several 
noise types. The CHiME series dataset involves not only 
additive noise but also reverberation [43]–[45]. 
Specifically, CHiME-2 consists of reverberant and noisy 
speech utterances. It was created by first convolving WSJ 
with a binaural room impulse response, then mixing it 
with binaural noise recorded in a living room at different 
SNRs. While CHiME-3 contains simulated and real noisy 
data recorded on different locations, e.g. on the bus, cafe, 
pedestrian area, and street junction, using a microphone 
array on a tablet. CHiME-4 is an extended version of 
CHiME-3. The CHiME series are commonly used when 
it is intended for ASR applications. In other works [7], 
[9], [26], they simply add noise to the WSJ corpus with 
non-speech environmental sounds or musical noises. 

Other frequently used datasets are Voice Bank 
corpus [46], TIMIT corpus [47], and Aurora series [48]. 
Voice Bank and TIMIT originally contain clean speech 
data.  These datasets are typically corrupted with some 
noise datasets such as NOISEX and DEMAND that 
include noises such as voice babble, factory noise, 
environmental noises such as in the bus, park, and cafe, 
and speech-shaped noise (SSN). While Aurora series are 
the noisy dataset that is developed by the European 
Telecommunications Standards Institute (ETSI). Aurora-
2 is a digit recognition task and Aurora-4 is a large 
vocabulary continuous speech recognition task (LVCSR) 
which is based on WSJ corpus. Overall, these datasets 
were created for scenarios from small vocabularies such 
as digit recognition to large vocabularies. The datasets 
vary from simulated to real recordings data, and from 
additive noise to reverberation. These datasets are 
frequently adopted probably for two reasons. First, the 
amount of data is suitable for training deep learning. The 
datasets contain hours of speech recordings. Second, the 
datasets have become a benchmark for SE task. 
Moreover, the CHiME series are continuously updated 
through annual challenges. 

The standard metrics to evaluate the performance of 
SE systems can be grouped into two, subjective and 
objective measures. Typical subjective measures are 
mean opinion score (MOS), the signal (SIG) distortion, 
and the background (BAK) noise intrusiveness. SIG, 
BAK, and MOS have a scale from 1 to 5 where the higher 
value is better. On the other hand, typical objective 
measures include segmental signal-to-noise ratio 
(segSNR), distance measures, source-to-distortion ratio 
(SDR), perceptual evaluation of speech quality (PESQ), 
and short-time objective intelligibility (STOI). PESQ is 
measured from -0.5 to 4.5, the higher value is the better 
speech quality. All of these measures are performed to 
assess the speech quality and intelligibility. In addition, 
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word error rate (WER) or word accuracy (WA) is a 
common metric used to particularly evaluate the 
performance of ASR systems. 

V. DEEP LEARNING METHODS FOR SPEECH 

ENHANCEMENT 

In this section, we review recent deep learning 
methods that are designed to address SE problem 
including DNN, DAE, RNN-LSTM, CNN, and GAN. 
The works using mapping-based methods are 
summarized in Table 1 and masking-based methods in 
Table 2. We summarize the advantages and 
disadvantages of the different methods in Table 3. 

A. Based on DNN 

Deep neural network (DNN), also known as feed-
forward fully connected layer or multilayer perception 
(MLP) with many hidden layers, is one of the most used 
architectures for SE [8], [21], [26], [27]. The network is 
called fully-connected network because each node of the 
layer shares a connection to every node in the previous 
layer. Therefore, DNN has very large parameters. The 
work by Karjol et al. [27] proposed an enhancement 
scheme using multiple DNN based system involving n 
number of DNN, each is contributing to the final 
enhanced speech, and utilizing a gating network which 
provides the weights to combine the outputs of the n 
DNN. The model uses n=4, each of which is three layers 
deep. Average PESQ of 2.65 is achieved for seen noise 
and 2.19 for unseen noise on average SNR -5 to 10 dB on 
TIMIT corpus. While in [28], DNN masking-based 
method could achieve higher PESQ of 2.705. In [8], 
DNN was extended by incorporating a speech 
intelligibility metric into the loss function. The results 
showed an average under mismatched SNR with PESQ 
of 1.99. Another work by Bagchi et al. [21] also 
attempted to extend the model by combining mimic loss 
with the traditional criterion to train the speech enhancer. 
The mimic loss is defined as the mean square difference 
between spectral classifier outputs. 

Although DNN has been successfully performed as 
a regression model for SE, the enhanced speech resulted 
from the model often deteriorates in low SNR conditions. 
Gao et al. [26] introduced a progressive learning 
framework for DNN-based SE. The model decomposed 
a conventional DNN into multiple stages with a different 
SNR in each stage, instead of mapping directly from 
noisy speech to clean speech. The model was trained on 
single-SNR and multi-SNR setting using WSJ corpus and 
tested on seen and unseen noises such as babble, factory, 
and destroyer engine. The results achieved PESQ score 
of 1.93 for single-SNR training and 1.82 for multi-SNR 
training on average (SNR -5 and 5 dB). 

B. Based on DAE 

In most of the works [18], [24], deep autoencoder is 
based on DNN whose outputs have the same 
dimensionality as the inputs. Deep autoencoder is often 
used for representation learning. The spectral mapping 
method with a denoising criterion, namely denoising 
autoencoder (DAE), was introduced by Lu et al. [24]. 
The model was extended to deep DAE by Feng et al. [18]. 
The model performed mapping from noisy to clean 

speech in the Mel-spectral domain. DAE is originally 
trained to convert the corrupted input 𝑦 into a hidden 
representation 𝑧 using the encoder as written in (10). 

                             𝑧 ൌ 𝜎ሺ𝑊𝑦  𝑏ሻ,                           (10) 

where 𝜎 is a non-linear activation function. 𝑊 and 𝑏 are 
weight matrix and bias vector respectively. The resulting 
representation 𝑧 is subsequently converted back to a 
reconstructed input �́� using the decoder as described in 
(11). 

                              �́� ൌ  𝜎ሺ𝑊′𝑧  𝑏′ሻ,                          (11) 

where 𝑊′ and 𝑏′ are appropriately sized parameters of 𝑊 
and 𝑏, respectively. DAE is trained by minimizing the 
MSE loss between the input 𝑦 and its reconstructed input 
�́�. However, DAE network has a limitation of learning 
temporal information. Thus, it is typical to train the 
network using a small context window. Recently, there is 
a work that has employed DAE using convolutional 
layers to cope with the temporal problem [12].  

C. Based on RNN-LSTM 

When dealing with a sequence-based data such as 
speech signal, there is recurrent neural network (RNN) 
and long short-term memory (LSTM) which can handle 
context information. This network does not exploit the 
information only from the current input, but also from the 
previous hidden layer. Maas et al. [23] performed RNN 
to denoise corrupted input features, such as MFCC. The 
enhancement process using RNN has been shown to be 
more effective than using DNN to enhance noisy speech 
signal with SNR at various levels. 

More recent work by Gao et al. [9] has been inspired 
by curriculum learning. They proposed a progressive 
learning framework with LSTM network to improve the 
performance of DNN-based speech in low SNR 
environment. Each of the target layers is designed to 
learn the transition speech with higher SNR and clean 
speech at the last layer. Furthermore, LSTM-RNN has 
been implemented to overcome the problem of highly 
non-stationary additive noise [11], reverberation [10], 
and multichannel noisy speech [34]. In [11], hand-crafted 
features like MFCC has been outperformed by using 
bottleneck features resulted from the bidirectional LSTM 
network (BN-BLSTM). The average WA using MFCC is 
38.13%, while using BN-BLSTM is 43.55%. Speech 
processing systems have been largely improved with the 
help of LSTM-RNN. However, learning the RNN 
parameters is known to be difficult and takes a lot of 
resources. 

D. Based on CNN 

Convolutional neural network (CNN) has received a 
lot of attention from researchers in speech field [6], [12]–
[17], [22],  [33].  CNN has the ability to capture pattern 
in the neighboring frames by using a set of local 
connections. Figure 2 shows the architecture of a two-
dimensional (2D) fully CNN on spectrogram features. It 
has also been reported to be more effective than standard 
feed-forward neural network [15] and more efficient than
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Figure 2. Architecture of A Fully CNN for Speech Enhancement. 

RNN [12], [49]. Park & Lee [12] has demonstrated that 
CNN can achieve better performance with network 12 
times smaller than RNN. CNN is capable of dealing with 
local temporal-spectral structures of speech, thus it is 
effective for separating the speech and noise elements of 
the noisy signals. CNN has shown its effectiveness for 
enhancing speech in both spectral and waveform domain.  

Park & Lee [12] introduced spectral mapping using 
redundant convolutional encoder decoder (R-CED). This 
network uses spectrogram as the input that is viewed as 
an image of 2D representations with 1 channel. The 
encoder and decoder of this network consist of repetitions 
of convolutional layers. Unlike typical autoencoder 
network, R-CED encodes features of the spectrum into 
higher dimension and achieves the compression along the 
decoder. Skip connections are used to preserve 
information from the encoding stage to the decoding 
stage to improve the performance. This SE work is 
attempted for an embedded device such as the hearing 
aid. Thus, the objective is to find an efficient denoising 
algorithm which can be achieved by using CNN. This 
work showed that CNN achieved best STOI, PESQ, and 
SDR scores compared to DNN and RNN. 

There are also recent works of CNN-based SE for 
ASR application [6], [16], [30]. Kinoshita et al. [30] 
employed speech denoising based on masking estimation 
using CNN. This work is motivated by the success of 
temporal convolution networks for speech separation 
(Conv-TasNet) [50].  They adapted the network 
architecture for denoising task, namely Denoising-
TasNet, which is performed on both time and TF domain. 
This work also investigated multi-task loss that predicted 
two outputs, speech, and noise. The best performance is 
achieved by network in time domain with multi-task loss. 
Moreover, an extended version of CNN using residual 
network (ResNet) has been proposed [22]. An improved 
result can be achieved since the architecture of ResNet 
matches the SE task, which is to reconstruct the input 
signal by removing the residual noisy signal. 

In addition, [14], [15], [17] proposed an end-to-end 
learning method for speech denoising by processing raw 
waveforms directly. In [17], the model was based on a 
novel network structure called WaveNet [49]. The 
network consists of a series of non-causal and dilated 
convolutional layers that learn in a supervised fashion via 
minimizing the regression loss. The dilation factors 
contribute to a receptive field that can significantly 
reduce the computational complexity. The overall results 
of this method show that CNN is better compared to 
conventional Wiener filter with 23% relative 
improvement of MOS quality. 

E. Based on GAN 

Generative adversarial network (GAN) has also 
received increasing attention to improve the model 
enhancement performance further. GAN consists of a 
generator network (G) and a discriminator network (D), 
as shown in Figure 3. GAN training is commonly built 
on convolutional layers [19], [20], [25] or fully connected 
layers [32]. Speech enhancement based on GAN training 
(SEGAN) was first introduced by Pascual et al. [25]. The 
generator network learns to map features of the noisy 
speech into the clean speech. The discriminator network, 
which acts as a binary classifier, subsequently assesses 
whether the samples come from the clean speech (real) 
or the enhanced speech (fake). In general, the two 
networks are trained in an adversarial manner and 
optimized by using (12). 

 
𝑚𝑖𝑛

ீ
𝑚𝑎𝑥


𝑉ሺ𝐷, 𝐺ሻ ൌ  𝔼௫~ೌೌሺ௫ሻሾ𝑙𝑜𝑔 𝐷ሺ𝑥ሻሿ 

                                 𝔼௫~ೌೌሺ௫ሻሾ𝑙𝑜𝑔ሺ1 െ 𝐷ሺ𝐺ሺ𝑦ሻሻሻሿ. (12) 

Based on the discriminator results, the generator 
attempts to adapt the distribution to produce better 
outputs until the discriminator cannot distinguish the 
outputs whether those are real or fake.  However, training 
GAN is difficult and unstable. Many other works tried to 
improve the performance of SEGAN [19], [20], [32]. 
Baby and Verhulst [19] implemented a relativistic loss 
function at the discriminator network with gradient 
penalty. This work showed that an improved 
discriminator could produce a cleaner speech. In 
addition, the work also utilized gradient penalty as 
stabilizer of the training. Phan et al. [20] proposed to use 
multiple generators instead of a single generator. The 
purpose was to gradually perform multi-stage 
enhancement mapping. The proposed method was better 
than SEGAN in terms of PESQ, CSIG, CBAK, COVL, 
and SSNR. While [7] attempted to modify SEGAN 
architecture for feature enhancement. Unlike SEGAN, 
the work is implementing on log-Mel features instead of 
waveforms because it is intended for ASR applications. 

While GAN is gaining popularity in the mapping-
based method, some works ([29], [32]) attempted to use 
it in the masking-based method. In [29], GAN is utilized 
to predict the masks. A regularized objective function of 
MSE is applied to improve the vanilla GAN.   The results 
show an improvement of PESQ and STOI over a recent 
GAN-based speech enhancement.   

 
Figure 3. Architecture of A GAN for Speech Enhancement.
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TABLE 1 
SUMMARY OF DEEP LEARNING WITH MAPPING-BASED METHODS FOR SPEECH ENHANCEMENT  

Method Features  Refs. Dataset Evaluation Metrics Results 

DNN (Log/power) mag. [8] IEEE corpus + NOISEX  PESQ, SDR, STOI Results averaged under mismatched SNR (-3 to 
3 dB) PESQ: 1.99, SDR: 11.35, STOI: 90.61%.

(Log/power) mag. [21] CHiME-2 WER Error rate of 14.7%. 

(Log/power) mag. [27] 

 

TIMIT + noises from 
Aurora dataset 

PESQ, STOI, 
SegSNR 

Average best PESQ achieves 2.65 for seen 
noise and 2.19 for unseen noise. 

LPS (log-power 
spectral) 

[26] 

 

WSJ + environmental and 
musical noises 

PESQ, STOI, SSNR PESQ 1.93 for single-SNR training, PESQ 1.82 
for multi-SNR training, tested on unseen noise. 

DAE MFCC [18] CHiME-2 WER Error rate of 34%. 

(Log) Mel [24] Japanese corpus + 
environmental noises 

PESQ Average PESQ on factory noise is 3.13 and on 
car noise is 4.08. 

RNN-
LSTM 

LPS (log-power 
spectral) 

[9] WSJ + environmental and 
musical noises 

SDR, STOI Average results SDR: 9.46 and STOI: 0.86. 

MFCC [10] CHiME-2 WA, WER Average accuracy is 85%. 

MFCC, bottleneck 
features (BN) 

[11] Buckeye (spontaneous 
speech) + CHiME noises 

WA Average WA using MFCC: 38.13%, BN-
BLSTM: 43.55%. 

MFCC 

 

[23] 

 

Aurora-2 WER, MSE Average error rate (SNR 0-20 dB) on seen 
noise is 10.28% and on unseen noise is 12.90%.

(Log/power) mag., 
(log) Mel 

[6]  CHiME-2 + environmental 
noises 

WER Best average error rate of 7.8% is achieved 
using magnitude features (accuracy of 92.2%). 

(Log/power) mag. [12] TIMIT + environmental 
noises 

PESQ, STOI, SDR CNN achieved best accuracy compared to DNN 
and RNN, PESQ: 2.34, STOI: 0.83, SDR: 8.62.

(Log/power) mag. [22] CHiME-2 WER Error rate of 9.3% is achieved by using ResNet 
+ mimic loss. 

(Log) Mel [16] Aurora-4, AMI WER WER of 8.31% on Aurora-4. 

Raw signal, 
(log/power) mag. 

[13]  TIMIT + NOISEX + SSN PESQ, STOI,  SI-
SDR 

Results show that Autoencoder CNN achieved 
better performance than SEGAN. 

Raw signal [14]  Voice Bank + DEMAND SNR, SIG, BAK, 
OVL 

SNR:19.00, SIG: 3.86, BAK: 3.33, OVL: 3.22. 

Raw signal [15] TIMIT +  environmental 
noises 

PESQ, STOI Best STOI is achieved by fully ConvNet, while 
best PESQ is achieved by DNN. 

Raw signal [17] Voice Bank + DEMAND  SIG, BAK, OVL, 
MOS 

MOS of 3.60 is achieved. Overall results are 
better compared to Wiener filter. 

GAN (Log) Mel [7] WSJ + environmental and 
musical noises 

WER Error rate of 17.6%. 

Raw signal [19] Voice Bank + DEMAND STOI, PESQ, 
SegSNR 

STOI: 0.942, PESQ: 2.62, SegSNR: 17.68. 

Raw signal [20] Voice Bank + DEMAND PESQ, CSIG, CBAK, 
COVL, SSNR, STOI 

PESQ: 2.39, CSIG: 3.55, CBAK: 3.11, COVL: 
2.93, SSNR: 8.72.  

Raw signal [25] Voice Bank + DEMAND PESQ, CSIG, CBAK, 
COVL, SSNR 

PESQ: 2.16, CSIG: 3.48, CBAK: 2.94, COVL: 
2.80, SSNR: 7.73. 

TABLE 2 
SUMMARY OF DEEP LEARNING WITH MASKING-BASED METHODS FOR SPEECH ENHANCEMENT  

 Method Features  Refs. Dataset Evaluation Metrics Results 
DNN MFCC, LPS (log-

power spectral) 
[28] TIMIT + environmental 

and musical noises 
PESQ, STOI, SSNR PESQ: 2.705, STOI: 0.871, SSNR: 5.194. 

RNN-
LSTM 

(Log/power) mag. [34] CHiME-3 PESQ, STOI PESQ achieves over 2.50 and STOI up to 0.9. 

CNN (Log/power) mag., 
raw signal 

[30] CHiME-4, Aurora-4 WER, SDR Chime-4: WER 8.3% (real data), 10.8% 
(simulated), SDR: 14.24, Aurora-4: 6.3%. 

(Log/power) mag. [31] Grid corpus + CHiME-3 
noises 

PESQ, STOI PESQ: 2.60 and STOI: 0.70 for seen noises, and 
2.63 and 0.74 for unseen noises. 

(Log/power) mag., 
phase 

[33] Voice Bank + DEMAND PESQ, CSIG, CBAK, 
COVL, SSNR 

PESQ: 3.24, CSIG: 4.34, CBAK: 4.10, COVL: 
3.81, SSNR: 16.85. 

GAN (Log/power) mag. [29] Voice Bank + DEMAND PESQ, CSIG, CBAK, 
MOS, STOI

PESQ: 2.53, SIG: 3.80, BAK: 3.12, MOS: 3.14, 
STOI: 0.93.

(Log/power) mag. [32]  TIMIT + NOISEX + SSN PESQ, STOI GAN gives consistently better STOI score, but 
not much of an improvement in PESQ.
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TABLE 3 
SUMMARY OF ADVANTAGES AND DISADVANTAGES OF DEEP LEARNING APPROACHES 

Method Advantages Disadvantages 

DNN Familiarity of the model architecture since the 
networks tend to be straightforward 

DNN has a very large parameters because each node of 
the layer shares a connection to every node in the 
previous layer. 

DAE DAE performs dimensional reduction and the 
features of the bottleneck layer might be useful.  

DNN-based DAE has a limitation of learning temporal 
information. 

RNN-
LSTM 

- Best for dealing with a sequence-based data such 
as speech signal. 

- RNN-LSTM can handle context information. 

Learning the RNN parameters is known to be difficult 
and takes a lot of resources. 

CNN - CNN has the ability to capture pattern in the 
neighboring frames of speech structures. 

- CNN is more effective than standard DNN and 
more efficient than RNN. 

Lack of the ability to be invariant to the changes of the 
input data. 

GAN The combined networks in GAN can be powerful if 
it is trained properly. 

The adversarial training tends to be difficult and 
unstable. 

CONCLUSION 

We provided an overview of several recent deep 
learning-based methods, such as DNN, DAE, RNN-
LSTM, CNN, and GAN that are designed to address 
speech enhancement problem. We evaluated each 
method to show that there is considerable room for 
further research in the area. We concluded that, the above 
reviewed works revealed that a trend for speech 
enhancement task has gradually shifted from using 
cepstral or spectral representation (TF domain) to using 
waveform representation (time domain). This trend is 
mainly supported by the powerful capability of deep 
learning. The capability to directly extract representation 
from raw signal allow us to retain complete information 
of speech compared with the hand-crafted features like 
MFCC. Moreover, the availability of resources such as 
cloud computing and a massive collection of training data 
have also provided great support in the improvement of 
deep speech enhancement model. 

Related to the network architecture, it starts shifting 
from the standard DNN to CNN. The main reason is that 
DNN-based algorithms are not able to efficiently learn 
the temporal information structure of speech signal. 
Moreover, CNN can significantly reduce the 
computational load compared with DNN and RNN-
LSTM because it utilizes convolution and pooling 
operations as well as enforces parameter sharing. 
Furthermore, the network training strategy also starts 
shifting from a conventional method with a single 
network to GAN with an adversarial training that utilizes 
two networks. As shown in Table 1, acoustic features 
such as magnitude and Mel spectrogram are preferable 
than MFCC in recent neural network structure, since they 
are more suitable for deep learning method. With this 
rapid development of deep learning training, we are able 
to achieve further improvement for speech or feature 
enhancement model. While studies indicated that deep 
learning-based approaches performed really well, those 
still had poor adaptability of the system in real-world 
environment. Thus, exploring this aspect further is an 
interesting future direction. 
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