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Abstract 

Deep learning technology has a better result when trained using an abundant amount of data. However, 

collecting such data is expensive and time consuming.  On the other hand, limited data often be the inevitable 

condition. To increase the number of data, data augmentation is usually implemented.  By using it, the original data 

are transformed, by rotating, shifting, or both, to generate new data artificially. In this paper, generative adversarial 

networks (GAN) and deep convolutional GAN (DCGAN) are used for data augmentation. Both approaches are 
applied for diseases detection. The performance of the tea diseases detection on the augmented data is evaluated 

using various deep convolutional neural network (DCNN) including AlexNet, DenseNet, ResNet, and Xception.  

The experimental results indicate that the highest GAN accuracy is obtained by DenseNet architecture, which is 

88.84%, baselines accuracy on the same architecture is 86.30%. The results of DCGAN accuracy on the use of the 

same architecture show a similar trend, which is 88.86%.  
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I. INTRODUCTION 

Tea (Camellia sinensis) is one of main agriculture 

product from Indonesia.  Based on data from FAO, 

Indonesia is one of the biggest tea producing countries 

in the world [1]. The Research Institute for Tea and 

Cinchona (RITC) in Gambung West Java is a research 

and development institute of Tea and Quinine 

commodities in Indonesia. The two superior varieties of 
RITC are the Gambung Assamica (GMB) series, which 

comprise of eleven types of clones, and Gambung 

Sinensis (GMBS), which comprise of five types of 

clones.  

The crop production could significantly decrease 

when the tea plants are suffered from diseases. Tea 

diseases may also affect the quality of the produced tea. 

Several common diseases that are found in Indonesia 

are blister blight, caterpillar looper (Hyposidra talaca), 

and leafhoppers (Empoasca sp.) [2]. These diseases are 

usually triggered by climate conditions in Indonesia. For 
instance, for blister disease in GMB series, the trigger 

factors are the temperature and humidity. Usually, GMB 

clones get blister attack in the rainy season [3], but it 

would rarely be found during dry season.  
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Tea plant experts can detect diseases in tea leaves 

by looking at the physical characteristics that appear on 

the leaves, such as its colour, size, bone structure, and 

texture [4]. However, there would be inadequate 

number of experts available to provide correct diagnosis 

of the diseases. Therefore, the need of an automatic 

devices to identify the tea diseases is very important. 

The detection of tea leaves disease by utilizing deep 

learning technology is one of the best solutions. Several 

studies on the discovery of diseases in plants by using 

this technology have been carried out in [2], [4]-[8]. In 

these works, deep convolutional neural networks 
(DCNN) are usually employed. Works on [2] and [4] 

use the original image in the dataset as input for the 

experiment. Attention Cropping (AC) used in [5], 

transfer learning and deep feature extraction are used in 

[6], rotation transformation technique and mirror 

symmetry are used in [7], while [8] uses unsupervised 

feature learning. Only [8] uses DCGAN. 

In deep learning, one of the main challenge is to 

avoid overfitting in the training process. According to 

Ying et al. [9], overfitting occurs due to several things, 

including the limited size of training data, the presence 
of noise, and the complexity of classifying data. DCNN 

usually requires large amount of data to train. The lack 

of data may cause the networks to easily overfit. Thus, 

practising with more data is one way to avoid 

overfitting. The availability of enough amount of data 

with variety of conditions is significant for deep neural 
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networks to produce a robust model. However, building 

a large dataset may be costly and time consuming. This 

is because a particular disease may only attack the 

plants on a limited time of a year. Producing data with 

great amount also requires human resources to collect 

them. One way to overcome the problem of limited data 

is by augmenting the data. With data augmentation, 

variations of new data for training the deep learning 

algorithms, making it less prone to overfit.  
Data augmentation is the process of generating 

more diverse data either by collecting new data or 

generate new data artificially. Traditionally, In-depth 

learning requires more data when compared to machine 

learning. For this reason, optimal performance is a need. 

If the original image data is still inadequate to conduct 

training, then we can do data augmentation techniques 

on the original image data. This technique will 

manipulate data without removing important 

information from the data. There are many techniques 

for data augmentation, such as scaling, translation, 

rotation, cropping, bluring, flipping, transposinge, 
random erasing,  and adding noise addition are 

techniques for data augmentation , and etc. 

First approach is by transforming data. In these 

approach, various image processing and transformation 

such as translation, rotation, and shifting, are performed 

to the existing data to increase the number of data. In 

this approach, the resulted data, in a sense, are not really 

new and mostly effective to adapt the DCNN models to 

environmental variations.  

Recently, there is an increasing interest to develop 

deep learning architectures for generating artificial data. 
In addition to traditional methods, other methods use 

generative adversarial networks (GAN). GAN is 

proposed to get data augmentation. A Generative 

Adversarial Networks (GAN) discovered by 

Goodfellow et al. [10] in 2014. GAN are generative 

models, which can produce trained images to learn 

underlying distribution of the real data without even see 

the real data.  

Figure 1 depicts the architecture of GAN. GAN are 

generative models, which can produce images. There 

are two neural networks involved in the GAN 
architecture, namely generators and discriminators, 

which are involved in two “adversarial” networks. The 

generator tries to make a realistic picture to trick the 

differentiator. Whereas the discriminator, on the other 

hand, tries to correctly recognize whether the image 

shown is from the original image or generator (fake 

image), as shown in Figure 1. These two neural 

networks compete with each other to produce new 

synthetic data that can increase the amount of variation 

in real data. The exciting part of the GAN is that the 

discriminator cannot know which images are from the 

original dataset and which ones are from the generator. 
That is because the generator can make noise as random 

input and map the noise into an image. One variant of 

GAN is Deep Convolutional GAN (DCGAN) [11]. 

DCGAN has the same concept as GAN except it replace 

multilayer perceptron in GAN into convolutional layers. 

The DCGAN structure consists of several convolution 

layers without maximum unification or fully connected 

layers, as shown in Figure 2. In DCGAN, pooling layers 

with stride convolutions are used for discriminators, and 

fractal-stride convolutions are used for generators. 

Batch normalization is applied at the discriminator  

except at the input layer, and at the generator except at 

the output layer. The generator uses Rectified Linear 

Unit (ReLU) activation for all layers except for the 

output, while the discriminator uses Leaky ReLU 

activation for all layers. 

In this paper, we  wanted to improve data 
augmentation by using GAN and DCGAN for tea 

disease detection. Since GAN and DCGAN are 

unsupervised learning, we apply both on each class of 

our data. After the training process is complete, we use 

the generator to generate artificial data for each class, 

which could be augmented to the real data and then are 

used in the training. The performance of plant diseases 

detection is evaluated on popular DCNN architectures, 

such as Alexnet, DenseNet, ResNet, and Xception. Our 

experimental results show that the use of GAN and 

DCGAN for data augmentation, the performance is 

improved. It is better than only using original data for 
training. 

The main contributions of this experiment are as 

follows: 

1. The GAN and DCGAN approaches are implemented 

in data augmentation to produce new images that are 

more varied based on the original image reference. 

2. Reducing cost, time and human resources in taking 

data of original tea leaves in tea plantations. 

3. Advanced technology in generating new data on the 

tea leaf domain. 

 

 
Figure 1. General Architecture of GAN 

 
Figure 2. General Architecture of DCGAN 
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This paper has structure as follows: Section II 

describes our proposed method. In Section III, the 
experimental setup is presented. Section IV describes 

the result and discussion. Finally, Section V explains the 

conclusions. 

II. PROPOSED METHOD 

In this section, we first describe briefly, several 

DCNN architectures that are used in plant diseases 

detection. Then, we present the architecture of our GAN 

and DCGAN.  

A. AlexNet 

Krizhevsky et al. [12] introduce AlexNet and it  

achieves the best performance on ImageNet Large Scale 

Visual Recognition Challenge in 2012 AlexNet consists 

of eight convolution layers, max-pooling, and three are 

fully connected layers, as shown in Figure 3. Softmax is 

used as activation for the fully connected layers. This 

architectural image is redrawn from [13]. 

B. DenseNet 

Densely Connected Networks (DenseNet) is 

proposed in [14], the source of Figure 4 [14]. This 

architecture maximizes the effect of shortcut 

connections, and all layers are connected directly. All 

layers receive additional input from all previous layers, 

and pass feature-maps to all subsequent layers, as 

shown in Figure 4. As a result, the network becomes 

compact and thinner, i.e., the number of channels 

become less. The number of channels shows the number 

of additional channels for each layer. 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. AlexNet Architecture 

 
Figure 4. A 5-layer dense block with a growth rate of k = 4, 

Each layer takes all preceding feature-maps as input 

C. ResNet 

ResNet was introduced by He et al. in [15] to solve 

a problem of having very deep networks. Very deep 

networks, i.e. networks that have great number of 

hidden layers are prone to vanishing gradient problems. 
The effect is networks may fail to converge, and the 

solutions may stuck at local minimum and the 

performance may stuck at very low performance.  

ResNet has the main identity uses “shortcut 

connection” that can jumppass-over one or more layers 

in the network, as shown in Figure 5 [15]. That is the 

core of ResNet, then various variants of ResNet are 

developing layers of the idea. ResNet applies residuals 

as the shortcut connection to the layer stack. The 

advantage of using a residual block is that it maximizes 

accuracy if it is used together with a conventional layer. 

If the dimensions of the input data in the model are the 
same as the exit data dimensions, then it will do a 

residual block. Here, the neural network will retain what 

it has learned. The number of hidden layers can increase 

as much as needed with the help of a residual block, and 

this method will not cause the gradient to 

explode/disappear. 

Weight layer

Weight layer

+

X

ReLU

ReLU

X

identity

f (x)

f (x) + x  
Figure 5. A residual block of ResNet 
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 Figure 6. Xception architecture 

 

D. Xception 

Xception (extreme inception) is proposed [16]. 

Xception fixes Inception in terms of accuracy and 

speed. This architecture is built based on depthwise 

separable convolution layers and has three main flows, 

namely entry flow, middle flow, and exit flow. Xception 

architecture is illustrated in Figure 6 [16]. The data flow 

in Xception is as follows: first, the data enters through 

the entry flow. Then the data enters the middle flow, 
which is repeated eight times and exits through the exit 

flow. At each flow, separable convolution layers and all 

convolution layers are followed by batch normalization.  

E. Traditional Data Augmentation 

According to Shorten et al. [17], data augmentation 

is a series of techniques that can improve the quality of 

the training datasets and the number of datasets to get 

better deep learning models. The use of data 

augmentation can improve the performance of models 
with satisfying accuracy and increase data collection. 

According to Perez et al. [18], some simple data 

augmentation techniques include rotation, zooming  

in/out, flipping, shifting, and shading with a hue,  

distorted. But, these traditional approaches are basically 

produce a “duplicate” images. 

F. GAN and DCGAN for Data Augmentation 

Figure 7 shows the role of the data augmentation 
process in the classification task. GAN, as a generative 

model, receives random input (noise) through the 

generator as shown in Figure 1. The generator generates 

an image based on the distribution of the real images 

that it learned. Discriminator is trained to determine that 

the new image is fake. This adversarial runs until the 

generator is able to trick the discriminator that the 

generated image is the original data. The generated 

images created  during  GAN  training  process  are then  

 

 
 

Figure 7. Illustration augmentation data for classification task in our 

proposed method 

 

added to the original dataset. Therefore the dataset 
obtains some new data variations. 

The adversarial networks that we use for data 

augmentation are GAN (Figure 1) and DCGAN (Figure 

2). In general, GAN and DCGAN have the same 

architectures. The difference is, in GAN, multilayer 

perceptron is used whereas convolutional neural 

networks is used in DCGAN. The other difference is, 

DCGAN uses the Rectified Linear Unit (ReLU) 

activation function on the generator, while GAN applies 

LeakyReLU to the generator. Since GAN and DCGAN 

learn in unsupervised manner, we apply GAN and 

DCGAN for each class of our data. After GAN and 
DCGAN are trained for each class, generators are used 

to generate a number of new data for each class, which 

are then used for data training. 
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 After the augmentation process, the dataset is 

divided into three parts: 80% training set, 10% 
validation set, and 10% testing set. Then the data is used 

to train several CNN architectures such as AlexNet, 

Densenet, Resnet and Xception, as supervised CNN 

algorithms. The results of the classification task are 

expected to provide satisfying accuracy. 

III. EXPERIMENTAL SETUP 

In this experiment, we used healthy and diseased 

tea leaves from The Research Institute for Tea and 

Cinchona (RITC) in Gambung, West Java – Indonesia. 

The types of tea found in RITC, according to Prawira 

Atmaja et al. [19], include the variety of Camellia 
sinensis var. Assamica and Camellia sinensis var 

Sinensis. We collected images using a DSLR camera 

and a smartphone camera. Room conditions for shooting 

rely on room lighting and indirect sunlight, with a plain 

white background. The data of Tea leaf image consists 

of four classes, namely one class of healthy Tea leaves 

and three diseased Tea leaf classes. 

Tea leaf diseases include, among others, blister 

blight, leafhoppers (Empoasca sp.), and caterpillar 

looper (Hyposidra talaca). Some examples of healthy 

and diseased tea leave as shown in Figure 8. The 

amount of original image data used in this experiment 
amounted to 4,727 data, consisting of 1,248 image data 

for healthy Tea leaves, 842 data for blister blight, 1,728 

Empoasca sp. image data and 909 Looper Caterpillar 

data. 
Healty 

 

 

Blister Blight 

Empoasca sp 
 

 

 

Looper Caterpillar 

 

Figure 8. Sample pictures of tea leaves 

  

For experiments, the original dataset is divided into 

three parts: 80% training set, 10% validation set, and 
10% testing set. In addition to images of original Tea 

leaves from RITC, we also use images of Tea leaves 

from data augmentation from GAN and DCGAN, for 

training. We generate 1000 and 2000 data, notated 

GAN100 and GAN2000, for each classes for these 

experiments so now there are 7,933 for GAN1000, and 

11,933 samples data for GAN2000. The original 

training data are 3,933 sample data. Then the data are 

used to train several CNN architectures: Alexnet, 

Densenet, Resnet and Xception. 

This experiment uses TensorFlow (TF), Python, 
Keras, and machine learning nodes. All of these are 

High-Performance Computing (HPC) facilities owned 

by LIPI. This experiment uses parameters for the 

network as follows, image size 64x64 pixels, number of 

epoch 100, Adam as optimizers, learning rate = 1e-5. 

IV. RESULT AND DISCUSSION 

Table 1 shows the accuracy of the data 

augmentation results for the baseline, GAN 1000, 

DCGAN 1000, GAN 2000, and DCGAN 2000. In the 

baseline, DenseNet architecture achieves the best 

accuracy with 86.30%, followed by AlexNet, Xception, 

and ResNet. This is interesting since DenseNet is the 
architecture with the least number of parameters (See 

Table 2). But, with limited number of data, it is 

preferreable to have architectures with small number of 

parameters than those with large number of parameters 

as the amount of needed data are usually proportional to 

the number of parameters. Using data augmentation 

clearly improves the accuracy for all CNN architectures. 

Augmenting 1000 data those are artificially generated 

with GAN (GAN1000) to training data improves the 

performance for all architectures while DCGAN1000 

improves AlexNet and Densenet while the performance 
slightly worse for ResNet and Xception. Using more 

augmented data (GAN2000 and DCGAN2000) further 

improves the performance of ResNet and Xception, but 

the performance on AlexNet and DenseNet tend to be 

worse that GAN1000 and DCGAN1000.  So generally, 

adding more data improves the performance of our 

systems as expected. As we aim to optimize millions of 

parameters, having more data are expected to improves 

the performance. 

Figure 9 shows samples of generated data using 

GAN and DCGAN. All of the pictures of tea leaves in 

this paper are the result of our experiment. We observe 
that the quality of the generated data may affected the 

performance since data are generated artificially. 

 
TABEL 1 

THE PERFORMANCE OF DIFFERENT CNN ARCHITECTURE MODELS FOR 

DISEASSES DETECTION OF TEA LEAVES  

 

Architecture 

Accuracy (%) 

Baseline GAN 

1000 

DCGAN 

1000 

GAN 

2000 

DCGAN 

2000 

AlexNet 77.02 80.00 81.89 79.81 81.80 

DenseNet 86.30 88.84 88.86 86.66 87.11 

ResNet 71.53 72.16 70.63 73.78 73.51 

Xception 72.25 73.06 71.98 73.06 64.59 
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Figure 9. Example of the results of image augmentation data on DCGAN 1000 

TABEL 2 

NUMBER OF PARAMETERS FOR EACH CNN ARCHITECTURES 

Architectures 

AlexNet DenseNet ResNet Xception 

29,750,532 1,075,276 23,580,548 20,869,676 

 

Based on visual observation, in general, DCGAN 

generates more similar data to the original than GAN as 

GAN generates more “noisy” data and the distinctions 

between classes are less distinctive. But, DCGAN may 

produce images with similar looks (for instance 

empoasca and blister looks the same). So, adding more 
data does not necessarily improves the performance. 

The image produced by the DCGAN has 

drawbacks, for example, for the human eye, the details 

of leaf diseases are not yet apparent. In the future, the 

use of regularization labels might be an interesting 

direction to take because it is very clear that GAN and 

DCGAN cannot produce high quality images. 

CONCLUSION 

In this paper, we propose the use of augmentation 

data to detect disease in tea leaves. New data samples 

were obtained using generative GAN and DCGAN 

models. An increase in the number and variation of 
sample images has an impact on increasing the accuracy 

of disease detection in tea leaves. The results show that 

the image quality produced by DCGAN is better than 

GAN and in generally better performance can be 

achieved when using DCGAN.  
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