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Abstract 

Monitoring energy in buildings  can ease us to have a better understanding of electricity consumption patterns to support 
efficiency and avoid potential damages. However, indoor installations are mostly unmonitored because their panel meters are 
usually difficult to access. Yet, indoor maintenance tends to be more difficult since the cables are inside the wall, ceiling, or 
concrete. Internet of Things and big data analytics can be used to track electricity usage either in residential, commercial, or 
industrial buildings. This paper presents how a simple real-time energy data analytics was built at a low cost and high accuracy to 
inspect energy fluctuations, anomaly, and its significant pattern. We proposed 3 layers of architecture namely acquisition, 
transportation, and application management. An electronic module named PZEM004T was used to sense voltage, current, and other 

electrical parameters. Through a microcontroller ESP8266, the data was processed and sent it to an application layer via an existing 
wireless network. The actual and historical data of electricity were visualized on high-resolution graphs. The experiment was 
conducted at our office building. The experimental results showed that data of electrical energy usage can be captured close to real-
time and power anomaly and pattern can be figured. Performance and functionality testing showed acceptable use of this system 
with more than 99% accuracy. This system is intended to empower building managers in evaluating the electrical network balance 
as well as anticipating damage due to overload, overvoltage, and voltage drop. If this model is widely implemented it will produce 
big data that is useful for advanced analysis. 
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I. INTRODUCTION 

Monitoring electricity in buildings is crucial as it 

takes a dominant portion (73%) of final energy world 

usage in the form of electricity [1]-[2]. In Europe alone, 

residential, tertiary, and commercial building sector is 

responsible for over 50% of the electricity consumption 

[3]. Yet, most people currently spend 90% of their time 

indoors relying on electricity for most of their activities 

such as lighting and air conditioning for room comfort 
[4]. This leads buildings becoming the largest energy 

consumers worldwide and motivates people to find 

accurate and easy ways to monitor and control their 

electricity. The efficacy of monitoring actual electricity 

load in buildings not only provides convenience in 

controlling energy savings but also able to accurately 

manage load balancing to avoid outage and further 

damages as power overload, over or under voltage are 

still common problems on the consumers’ side [5], [6]. If 

this occurs for a long time, it may potentially damage not 

only the network installation itself but also consumer 

equipment or even building fire. Unfortunately, most 

electricity networks in buildings cannot be easily 

monitored because the power company provides kWh 

meters only at the main connection, and the data is 

difficult to access [7]. These make it harder for building 

managers to conduct energy evaluations while repairing 
indoor electrical installations tends to be more difficult 

since cables are often covered with ceiling, wall, or 

concrete.  

In a smart building perspective, buildings should be 

able to self-regulate their energy footprint to reduce 

overall energy consumption and peak power usage, while 

better aligning consumption with a renewable generation 

[3]. The recent development of Information and 

Communication Technology (ICT) especially the 

Internet of Things (IoT) makes the electricity either at 

residential, commercial, or industrial buildings possible 
to be tracked [8], [9] with higher data resolution in real-

time at low cost. Big Data Analytics helps to analyze 

large scale data collected from IoT sensors to give more 

insightful information on what was, is, or will be 

happening [10]. This article aims to show how a simple, 

real-time, and high-resolution energy monitoring and 

analytics using open IoT platforms is constructed as a 

monitoring model for smart buildings. This model should 

be able to visualize either short or long term fluctuation 
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of loads, voltage, current, frequency, and apparent and 

real power as they are common abnormality of electrical 

AC building’s installation especially in Indonesia [6] and 

therefore energy savings can be controlled, and potential 

failure and damages can be anticipated. 

Researchers have developed numerous approaches 

to enable fine-grain tracking of electric usage for 

buildings. The top motivation of those studies is to 

support the energy conservation program planned by 

most countries including Indonesia by enabling smart 

grids [11]-[13]. Smart grids functionality enables 
consumers to produce their own electricity using 

renewable resources and sell it back to the power 

company using the same power line [14]. C. Choi, et al. 

[15] proposed the construction of an effective energy 

monitoring system based on open IoT hardware and 

software platforms that can evaluate the consumer’s 

energy habits as well as forecast energy demand. 

However, the study did not focus on detailing indoor 

energy use. Instead, it was focused more on LoRa 

technology as a method of supporting long-distance data 

communication networks to reach wider outdoor areas. 
In addition, it also did not discuss how the energy data is 

acquired and how power outlier inside the wiring 

installation is detected as they focus more on renewable 

energy generation facilities, consumer demand patterns, 

and pricing prediction. 

D. Risqiwati, et al. [16] proposed a prepaid 

electricity metering system to collect energy data and put 

it online. The system used ACS712-20A to acquire 

electricity current from the 220VAC power grid. A 

microcontroller Arduino Uno was used to convert analog 

energy data from the current sensor into digital format. 

This data is captured every 3 minutes and sent it to a web 
server through a core computer network and the users 

could monitor their energy usage on the web. However, 

there are some shortcomings to this study in order to 

provide more accurate monitoring. First, the energy data 

sensed was only current while it indeed requires more 

variables like voltage, frequency, and power factor 

metrics. Secondly, since the data were collected in 3-

minute intervals, there is much more information lost 

during the intervals which were not monitored. 

Additionally, the average error measurement of the 

current data sampling was more than 25%, which was a 
significant accuracy issue. 

Similarly, A.R. Al-Ali, et al. [10] emphasized the 

scalability of IoT based energy data collection from 

houses using MQTT protocol. The researcher used 

Business Intelligence (BI) system to generate insightful 

information for analytics. This analytical system 

generates information and classifies it into four different 

stakeholder levels namely homeowner, community 

representative, state representative, and country 

representative. Security and data privacy issues were 

protected using https and encrypted authentication. This 

was comprehensive research, however, the area of how 

electricity metrics namely voltage, current, frequency, 

and power factor are monitored in real-time and high 

resolution remains unclear. On the other hand, D. Irwin, 

et al. [2] explored home automation (HA) protocols 

optimization for load monitoring in smart buildings.  

They assumed that one of the typical issues on HA 

was bandwidth. They evaluated two HA protocols 

namely X10 and Insteon Powerline protocol that was 
designed explicitly for remote load control for collecting 

data from sensor networks. Their experiment found that 

although both protocols have extreme bandwidth 

limitations, Insteon is generally more reliable than X10. 

To make the sensor networks more reliable, a smart 

pooling system using the round-robin method has been 

adopted. This shows that their study was emphasized on 

link layer protocol for handling data collection and query 

in that extremely limited bandwidth network. 

Furthermore, although accurate real-time information 

about various characteristics like occupancy, lighting, 
temperature and power consumption at the different 

levels of granularity have been modeled, none of the 

power quality issues in buildings was discussed. 

These literature reviews indicate there is a need for 

simple and accurate real-time electricity monitoring in 

buildings that enables building managers to evaluate 

energy consumption thoroughly. A clear example of this 

need is if a user requests to operate certain equipment, the 

building manager can assure whether the building has the 

capacity to fit and service it and that the building 

operation will not have any negative impacts on other 

sensitive equipment [17]. This can be achieved through a 
granular electricity analytics system that will be 

discussed further in this paper. This system can be 

developed to support advanced analytics either 

descriptive, predictive, or prescriptive analytics of energy 

in modern buildings including operation abnormality. 

The data collected can also be used to develop predictive 

models of the power quality either in the power 

generation side, transmitter, or consumer, with the aim of 

more rapid product quality assessment. 

II. PROPOSED METHOD 

The proposed architecture of this real-time energy 
analytics system is divided into three main layers: 

acquisition, transport, and application layer. The 

acquisition layer consists of sensors and a node as a data 

processor to collect and send electrical data. This data 

was sent to an application layer through a local area 

network called the transport layer. The detailed function 

of how each part works is illustrated in Figure 1. 

 
Figure 1. The proposed system architecture of real time energy analytics. 
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A. Acquisition Layer 

To validate the proposed architecture, a prototype 
was designed, build, and tested. We built the acquisition 

using microcontroller ESP8266, put it inside the MCB of 

our building, and connect it via WiFi to a server located 

at our local campus building. This layer consists of two 

main components: sensors and a data processor. Because 

the aim is to acquire building electricity data supplied 

from the 220 VAC 50Hz national grid, these sensors 

should be able to determine the root mean square (RMS) 

of voltage (𝑉𝑟𝑚𝑠), current (𝐼𝑟𝑚𝑠), and AC frequency 

(Hz). Having these basic properties, other derivative 

parameters such as apparent power (VA), real power 
(W), and power factor (PF) can be calculated [13], [18]. 

The apparent power which is the trigonometric results of 

active and reactive power is given in equation (1) while 

the real power is in equation (2). 

𝑉𝐴 = 𝑉𝑟𝑚𝑠 . 𝐼𝑟𝑚𝑠 (1) 

𝑊 = 𝑉𝐴 . 𝑃𝐹 (2) 

1) Sensors 

In this research, we used PZEM004T-100A capable 

of sensing voltage, current, active power, total energy, 

frequency, and power factor. Using systems-on-chip 
(SoC) SD3004 electric energy measurement with built-in 

MCU, PZEM004T can be operated at voltages from 80 

to 260 V, current up to 100 A, AC frequency from 45 to 

65 Hz, as well as power factor (PF) from 0 to 1 [19]. This 

device is attached to the MCB panel of our building. The 

acquisition steps are as follows.  

First, signals of RMS voltage, RMS current, and 

frequency are read by signaling block. The measurement 

block is analyzing these signals, then it is able to 

determine the value of VA, PF, and W.  The values are 

stored in 8-bit registers and retrieved through the TTL 
interface at 9600 bps speed in every 1000 ms. An 

optocoupler is used to isolate the measurement circuit 

(220 VAC) from hazarding the TTL circuit (5 VDC).  The 

block diagram of the device is shown in Figure 2. 

2) Microcontroller 

Secondly, a low-cost microcontroller ESP8266 is 

used to regularly acquire the data from the TTL interface 

before transmitting it to the application layer. This 

microcontroller is an open-source platform for IoT 

prototyping with an integrated WiFi module. Moreover, 

this microcontroller unit can be programmed via the 
Arduino IDE [13]. Open-Source library code of 

PZEM004T Power and Energy meter needs to be 

compiled and installed on the ESP8266. This code is free 

and downloadable at Github online repository. The 

wiring diagram of this acquisition block is illustrated in 

Figure 3. To prepare data to be ready to transport in 

nearly real-time and fully automatic without human 

intervention, we developed a private API that works in 

machine-to-machine (M2M) communication mode over 

hypertext transfer protocol (HTTP). At the client-side, 

the ESP8266 employs the HTTPClient Arduino library to 

work with the API using the HTTP Post method. The API 
is written in PHP language and run it on an Apache 

webserver. This will be described in the application layer 

section. At the end of this layer, WiFi client mode in the 

ESP8266 is activated to enable data transfer to the 

transport layer. 

 
Figure 2. PZEM004T-100A block diagram. 

 
Figure 3. Wiring diagram of acquisition layer. 

B. Transport Layer 

Third, the transport layer is needed to carry data from 

the acquisition block to its application. In this research, 
we used our existing IP based intranet campus 

infrastructure where human users also use it 

simultaneously for internet access (H2M or H2H). We 

assume every modern building today has this network 

infrastructure. The network may consist of some 

segments and various physical layers, but our system 

involves only two network segments where the ESP8266 

is connected to WiFi infrastructure routed with an 

Ethernet network before reaching the server at the 

application layer. Figure 4 illustrates the topology. 

C. Application Layer 

Finally, to get actionable information the energy data 
harvested from the acquisition layer is processed in the 

application layer. An Ubuntu Linux operating system is 

used for running an Apache web server and MySQL 

relational database engine. On top of the webserver, we 

run an analytics system of real-time energy data using 

ChartJS visualization. PHP software is used to compute 

the energy data within the program. In this experiment, 

PHP roles two functions, carrying data from the API to 

the database, and processing or computing data from the 

database to the visualization system interface. 

1) Database and Data Structure Design 
The acquisition layer proceeds three different 

sources of energy data from three-phase electricity 

sensors: R, S, and T. Each sensor carries five elements of 

energy data namely voltage, current, watt, frequency, and 

power factor.  The data is then stored in a database. To 

keep it as simple and the size as lighter as possible, we 

designed an SQL table shown in Figure 5. We add the 

other two important fields into the table named ID and 

reading_time. ID acts as a primary key in which 18 digits 

of alphanumeric data format, 

AABBCCYYMMDDhhmmss, is constructed. 
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Figure 4. Transport layer topology of real-time energy data analytics. 

 
Building_ID MCB_ID Line_ID Stored_Date Stored_Time 

AA BB CC YYMMDD hhmmss 

Figure 5. Eighteen digits of primary key data structure. 

This code consists of four different entities. AA 

represents two digits of building code, BB is two digits 

of MCB location code, CC is two digits of electricity line 

code, and another YYMMDDhhmmss is 12 digits of 

current timestamp taken from two digits of the year, two 

digits of the hour, two digits of minute, and two digits of 

the second. This time-block indicates the timestamp of 

the data received by the server while the reading_time 

field is the timestamp of the data taken from its sensors. 
We then use these records to measure the performance of 

data transfer. The whole fragments of this key ID are 

described in Figure 6. 

2) API Design 

An application programming interface (API) is a set 

of functions allowing an application to store or to retrieve 

data to or from a system or service [20].  In IoT based 

applications, designing an API means providing an 

effective interface that enables IoT sensors to store data 

collected from an object to a server or maintain sensor 

status effectively [10]. In this study, we designed an 

HTTP based API that bridges the wireless sensor network 
at the acquisition layer to send data to the database in the 

application layer. To verify an authorized client, we use 

a key inside the API code and only if the key match the 

data can be stored. The key can be changed at any time. 

The overall process can be described in the pseudocode 

as depicted in Figure 7. 

3) Anomaly Detection 

The term anomaly in this paper is used to describe 

the  outlier  of  power  fluctuation  data  in  a  certain time 

frame. We developed an analytical module for dynamic 

energy anomaly detection base on the concept of 
Interquartile Range  (IQR) as it has been used in [21] for 

a real-time decision-based system. IQR is calculated by 

sorting the data set, then finding the median, quartiles, 

and interquartile range. The first (Q1), second (Q2) also 

called  median,  and  third  quartiles (Q3) are  set  at 25%,  

 

Figure 6. Database design for storing energy data. 

 

Start 

Listen to a post request 

If the request method is post mode { 

If the API key matches { 

 Read energy data values; 

  Store the data into the 

database; 

 } 

} else { 

     No response 

} 

End  

Figure 7. The energy data API pseudocode. 

 

50%, and 75% quartile respectively. Those below the Q1 

are considered low outliers while above Q3 is high 

outliers. The basic formula of IQR is defined in equation 

(3). However, scientists have agreed that a data point is 

an outlier if distributed more than 1.5 IQR above the Q3 

or 1.5 IQR below the Q1. Therefore, the threshold of a 
low outlier (LO) and a high outlier (HO) can now be 

derived as in equation (3) and (4) respectively [23]-[24]. 

𝐼𝑄𝑅 =  𝑄3 –  𝑄1 (3) 
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𝐿𝑂 =  𝑄1 –  1.5𝐼𝑄𝑅 (4) 

𝐻𝑂 =  𝑄3 +  1.5𝐼𝑄𝑅 (5) 

4) Data Visualization 

Data visualization is a graphical form of representing 

data. In this research, we show how the RMS value of 

voltage (𝑉𝑟𝑚𝑠), current (𝐼𝑟𝑚𝑠), power factor (𝑃𝐹), and 

real power (𝑊) are visualized into two different modes. 

Using ChartJS, an open-source JavaScript library that 

allows us to draw different types of charts including bars, 

lines, and pies on HTML5 canvas element, we made 

nearly real-time analytics of 𝑊, 𝑉𝑟𝑚𝑠, 𝐼𝑟𝑚𝑠, and 𝑃𝐹, 

refreshing them at every 20 second, shown in Figure 8. 

On the other hand, using descriptive analytics we also 

visualize hourly 𝑉𝑟𝑚𝑠 that illustrate power quality trends 

through voltage analysis. The maximum and minimum 

𝑉𝑟𝑚𝑠 deviation of each hour is computed to see the 

voltage fluctuations as well as the trend of the day, as 

shown in Figure 9. This will be discussed further in the 

next section. 

III. RESULT AND DISCUSSION 

Sets of testing were developed to evaluate accuracy, 

performance, anomaly, and scalability. For this 

experiment, the proposed architecture based on 

PZEM004T sensors, an ESP8266 microcontroller, and a 

web server has been setup as in Figure 4. We installed the 

acquisition block inside the MCB box of our building, 

connecting it via WiFi to a server located at our local 

campus building. 

A. Accuracy 

The accuracy was tested by comparing the electrical 

parameter readings of voltage, current, and frequency on 

various static loads. A calibrated AVO meter to measure 

the targeted parameter was used simultaneously in 

comparing the PZEM004T readings. Table 1 shows both 

readings.  

As we used the PZEM004T that has very small 
reading error (<0.5%) [22], table 1 proves that statement 

is true. The overall error was 0.12% for the voltage, 

0.44% for the current, and 0% for the frequency. We did 

not evaluate PF since the AVO used did not have any FP 

meter to compare, but the reading PF values for each load 

were reasonable. For example, iron and rice cooker in 

which their equivalent circuits are purely a resistor 

indicated that both FP values were 1 while the 

refrigerator where the equivalent circuit consists of 

resistor, inductor, and capacitor was 0.7. These values 

were acceptable and consistent, and therefore the 
accuracy is good. 

B. System Performance 

The second evaluation was the performance of the 

system. In this model, we designed this system to be able 

to record both reading and storing time for each data as it 

has been shown in Figure 5. Reading time is the time of 

data opted from sensors while storing time is of the data 

inserted into the database. This time difference is used to 

measure the  speed of  data  transfer  from the acquisition

 
Figure 8. Nearly real-time energy data visualization. 

 
Figure 9. The visualization of office hours and non-office hours power anomaly test. 
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TABLE 1 

AVO VERSUS PZEM READINGS IN VARIOUS STATIC LOADS 

Load Profile @220V 

RMS Voltage RMS Current Frequency 

PFPZEM VAVO 

(V) 

VPZEM 

(V) 

Error 

(%) 

IAVO 

(A) 

IPZEM (A) Error 

(%) 

fAVO 

(Hz) 

fPZEM 

(Hz) 

Error 

(%) 

1. No Load 228.80 229.01 0.09 0.02 0.02 0 50 50 0 0 

2. Iron 350W 223.30 222.90 0.18 1.62 1.63 0 50 50 0 1 

3. Refrigerator 140W 227.76 227.50 0.11 0.57 0.58 1.75 50 50 0 0.7 

4. Rice cooker 400W 222.00 221.77 0.10 1.89 1.89 0 50 50 0 1 

Average 0.12   0.44   0  

 

TABLE 2 

THE SPEED OF READING AND STORING TIME OF DATA:  

SAMPLES REPRESENT OF OFFICE-HOURS (RIGHT) AND NON-OFFICE-HOURS (LEFT) 

# Read (date, time) Store (date, time) 
Delay 

(second) 
# Read (date, time) Store (date, time) 

Delay 

(second) 

 1 2019-09-21 21:27:59 2019-09-21 21:28:00 1 1 2019-09-22 10:34:44 2019-09-22 10:34:45 1 

2 2019-09-21 21:28:10 2019-09-21 21:28:10 0 2 2019-09-22 10:34:55 2019-09-22 10:34:56 0 

3 2019-09-21 21:28:20 2019-09-21 21:28:21 1 3 2019-09-22 10:35:05 2019-09-22 10:35:06 1 

4 2019-09-21 21:28:31 2019-09-21 21:28:31 0 4 2019-09-22 10:35:16 2019-09-22 10:35:17 0 

5 2019-09-21 21:28:41 2019-09-21 21:28:42 1 5 2019-09-22 10:35:26 2019-09-22 10:35:27 1 

6 2019-09-21 21:28:52 2019-09-21 21:28:53 1 6 2019-09-22 10:35:37 2019-09-22 10:35:37 1 

7 2019-09-21 21:29:02 2019-09-21 21:29:03 1 7 2019-09-22 10:35:47 2019-09-22 10:35:48 1 

8 2019-09-21 21:29:13 2019-09-21 21:29:13 0 8 2019-09-22 10:35:58 2019-09-22 10:35:59 1 

9 2019-09-21 21:29:23 2019-09-21 21:29:24 1 9 2019-09-22 10:36:08 2019-09-22 10:36:08 1 

10 2019-09-21 21:29:34 2019-09-21 21:29:34 0 10 2019-09-22 10:36:19 2019-09-22 10:36:19 0 

average 0.6 average 0.7 

 

 

system performance. This measurement involves data 

acquisition, data transfer, and data storing time, then 

called processing time. We used the same NTP (Network 

Time Protocol) server at both layers to make sure they 

have exactly the same time reference. The bigger the 

difference, the lower the performance. Some samples of 

this experimental result are presented in Table 2. 

The data on Table 2 showed that the processing time 

was fairly fast with no significant gap between the speed 

in office hours and non-office hours. The average speed 

was 0.6 seconds during non-office hours and 0.7 during 
office hours. These were normal because in office hours 

the network was much busier than non-office hours.  But 

most importantly, there was no delay in more than 1 

second, and therefore the overall performance for serving 

real-time monitoring system was reasonably acceptable. 

C. Real-time Visualization Analytics 

This testing was to evaluate the developed interface 

to monitor actual electricity condition in nearly real-time. 
This is mainly intended to gain situational awareness 

from the streaming energy data focusing on every event 

that matters most for making the right decision at the 

right time. The following experimental result was done at 

our ICT building and it includes voltage, current, watt, 

and power factor as shown in Figure 8. For convenience 

due to the limitation of the scale used, we grouped the 

voltage, current, and real power at the left axis while the 

right is for power factor. On the left axis, the red line that 

represents Watt is the multiplication result of the green 

and blue lines (voltage and current). Meanwhile, the right 

axis is used by the orange line to represent the power 
factor (FP). For higher scale resolution, unused number 

(0-169) on X-axis has been cut. 

With a high-resolution graph shown in Figure 8 

above, it can be seen that all parameters were fluctuating 

accordingly, moving from right to left, and as a result, it 

might show different meanings. For example, there was 

a sudden increase of voltage at 11:15:59 from about 202 

V to around 210  V which lead to a significant rise as well 

on the real power line from approximately 2.2 to 2.3kW. 

Referring to the normal value of our national grid voltage 

which is 220 V, this may mean that the grid line was just 

back from suffering to nearly normal. However, since the 

current was relatively stable (around 17.9  A), this event 

may probably be caused by a heavy load outside of our 

grid building installation. It was also interesting to note 
that a little increase in FP improved output power. As 

shown at minute 11:16:32, a little rise of PF from 0.61 to 

0.62 lead significant increase in output power from 

around 2.31 to 2.33 kW, which was the peak of the graph. 

Overall, the graph presents that the trend of power 

consumed tended to rise slightly during the period. This 

phenomenon has shown that this interface was able to 

visualize the streaming energy data every 10-second 

intervals properly. 

D. Anomaly Detection 

From the dynamic energy usage, we sampled two 

power consumption datasets namely office hours labeled 

as dataset 1 and non-office hours labeled as dataset 2 to 

evaluate their anomaly. Then we computed them based 

on the equation (3), (4), and (5) above. Both datasets are 

shown in Table 3.  Featuring 12 records of the dataset 

with the maximum and minimum power data 

distribution, Pmax=2360W and Pmin=2158W of the dataset 

1 operating from 07:00 to 19:00 local time, this 

evaluation resulted in the IQR=114, low outlier threshold 
LO=2024.8, and high outlier threshold HO=2479.9, 

meaning that no outliers occurred during the period. 
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TABLE 3 

OFFICE AND NON-OFFICE HOURS POWER CONSUMPTION DATA 

Office 

Hours 

Power 

(Watt) 

Non-office 

Hours 

Power 

(Watt) 

7:00 2158 19:00 2180 

8:00 2160 20:00 2160 

9:00 2187 21:00 2158 

10:00 2198 22:00 2131 

11:00 2201 23:00 2120 

12:00 2309 0:00 2089 

13:00 2360 1:00 2078 

14:00 2360 2:00 2065 

15:00 2310 3:00 2054 

16:00 2301 4:00 2068 

17:00 2260 5:00 2047 

18:00 2210 6:00 2039 

 

Similarly, the non-office-hours abnormality test 

presented IQR = 76, LO = 1949, and HO = 2251. With 

Pmax = 2158 W and Pmin = 2360W, this test also indicated 

that the power consumption was fluctuating in the normal 

distribution and still far from those outlier thresholds. 

Referring to the features, this operation is said abnormal 
only if the power consumption is either below 1949 W or 

above 2251 W. From this experiment, although they both 

showed no outliers due to the similar dataset used, these 

have shown that evaluating power anomaly using 

Interquartile Range (IQR) has been done successfully. To 

give the overall picture, the two evaluations have been 

summarized in Figure 9. 

E. Pattern Analytics 

Another interesting feature to be discussed from this 
experiment was the daily trend of voltage that helps how 

a building manager should act. As it is generally known 

that good power quality can be evaluated through its 

voltage [23]. Depending on the grid standard, most 

appliances can only be working optimally if the supply 

given is stable and in the range of their working voltage. 

A sensitive appliance such as a computer may not be 

working or will be at high risk if working in such 

fluctuating voltage. Therefore, it is crucial to keep the 

building manager aware of whether the voltage supplying 
the building is normal. Through our descriptive-analytic 

interface, the building managers can easily monitor the 

electricity supply quality in real-time as well as the daily 

voltage pattern. As the data keep changing, at the 

application layer we computed the minimum and 

maximum distribution of voltage each hour to be 

analyzed during the day. Figure 10 illustrates how the 

daily trend of RMS voltage of our building fluctuated. 

Overall, the chart indicates that the voltage began 

falling from 7:00 am to 21:00 pm. During the fall period, 

there had been a sharp drop in voltage between 12:00 pm 
and 15:00 pm. The blue line presented that the deepest 

drop was as low as about 178V fluctuating up to about 

200V to the red line. Of this circumstance, the building 

managers should be aware that the most critical condition 

was happening between 12:00 noon and 15:00 pm and 

the farthest deviation at 15:00 pm. This resulted in a 42- 

volt drop and was the worst power quality during the 

period. On the other hand, the red line also clearly 

showed that there was no voltage over 230V, meaning 

that the only problem was about overload but noting 

worried about the electricity supply of being overvoltage. 

By recognizing this pattern, there is a clear 
recommendation that the building managers should be 

aware of whether to avoid operating more loads or to 

improve the supply system to anticipate further damages. 

Additionally, since this system runs over the network, it 

can be monitored remotely as well. 

F. Sensor Network Limitation 

In this paper, we assumed that the local area network 

(LAN) that could be used to transport the sensor’s data to 
the application layer has existed in every building. The 

LANs are typically constructed of Ethernet cable 

connected with switches and WiFi infrastructure. 

However, since every acquisition layer should be 

attached to an MCB panel, there might be some cases 

where the network does not cover it. As discussed in [15], 

various physical layer technologies such as LoRa can be 

adopted to solve this problem, even though re-adjusting 

the acquisition interval may be required due to its 

bandwidth limitation. 

 
Figure 10. Hourly trend of Vrms visualization.
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CONCLUSION 

The simple real-time energy analytics for smart 

building using open IoT platforms has been modeled and 

tested. Both accuracy and performance tests showed an 

acceptable result. The functionality tests of streaming, 

anomaly, and pattern analytics also worked as expected. 

Therefore, this system can be used to empower building 

managers or other energy stakeholders to be more 

knowledgeable in controlling and maintaining power 

quality whether onsite or online. To make it more usable, 

future work may be required including to develop 

visualization interface to be more portable as well as to 
use LoRa or other possible media to improve sensor 

network scalability if it is used in buildings where LAN 

coverage is still the issue. Also, the development of other 

energy anomaly analytics such as voltage, frequency, and 

power factor may be useful for advanced needs. 
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