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Abstract 

Providing an appropriate level of flow collection, relying on packet capturing or flow sampling method, is extremely hard 
due to various practical limitations and resources requirements. To address this challenge, this paper investigated a CDF 
(Cumulative Distribution Function)-based flow detection to decide between “known” and “unknown” flows. Therefore, a 
combined flow collection can be achieved to improve the collection’s efficiency by sampling only the known flows and capturing 
the remaining unknown flows. As a preliminary experiment, detecting known and unknown flows was conducted over a long 
period by calculating the empirical CDF distance between each flow’s rate and overall packet’s rate distribution, called as FPR 
(Flow-to-Packet Ratio), with a threshold (FPRmin) based on a significant level of observed data. The result shows that unknown 
flow is detected for most of the recommended significant level values. 
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I. INTRODUCTION 

Providing an appropriate level of flow collection, 
relying on either distributed with fully captured or 
centralized with sampled, is extremely hard due to 
various practical limitations and requirements in packet 
capturing and flow sampling [1]. Simple flow 
collections can be collected through some available 
packet capturing tools. However, for monitoring wide-
area networks, the packets need to be replicated and sent 
to a single location. Then replicated packets are sent to 
the packet capturing tools, with or without match-based 
packet filtering process. Another way to enable flow 
collections is by using an agent that combines packet 
samples into datagram and randomly sampled according 
to a pre-defined sampling interval/ratio before sending 
the datagram into the collector [2].  

In this paper, flow is defined as a set of packets 
with a common property specified in the packet’s 
headers, known as the flowkey, which observed within a 
period. The packet capturing reflects exact flows being 
processed but only valid at that particular point and also 
known as a resource-consuming process. In contrast, the 
flow sampling is limited due to sub-optimal flow 
sampling ratio/interval. However, it has a unique global 
view of flows in the whole network and requires a 
minimum resource. So, there is a need to utilize 
combined methods that providing an appropriate level 
of flow collection and improving efficiency while still 

keeping the specific level of accuracy. Several sampling 
methods for network flow monitoring are proposed to 
address these needs. Providing efficient building blocks 
for sampling and large flow detecting by using 
OpenFLow based methods in SDN switch can be used 
in various monitoring application [3]. A double-
sampling and hold-based approach that includes two 
sample process, hold, and early removal process is 
proposed to maximize the flow information in the given 
limited resources [4]. Another approach is modular and 
self-adaptive measurement architecture that consists of 
management, sampling, and network plane to 
accommodate the selection and configuration of 
sampling technique [5]. R. Hofstede et al. [6] explained 
a novel traffic monitoring approaches as well as 
improving efficiency in processing and storing the 
traffic data. They used protocols such as Netflow and 
IPFIX, to perform flow monitoring, including packet 
observation, flow metering and export, data collection, 
and the final stage is data analysis. However, it needs 
improvement by combining packet analysis and flow 
monitoring. Another work tried to estimate the number 
of bytes and packets of the flow by using Maximum 
Likelihood Estimation (MLE). The expected relative 

error is defined as % 𝑒𝑟𝑟𝑜𝑟 196.  [7], means that 

avoiding flow sampling for achieving specific error, if 
the number of sampled flows is less than s. Performance 
can be improved by observing packet over a long period 
(not over short a time of sampling period) and counting 
the actual rate parameter (not only the packet count).  

This paper describe a decision problem to select an 
appropriate flow collection that combines two methods, 
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