Perancangan Quadband BPF dengan Komponen Lumpeduntuk Sistem m-BWA Design of Quadband BPFUsing Lumped Components for m-BWA System

Gunawan Wibisono^{*}, Daniel Simanjuntak, dan Taufiq Alif Kurniawan

Departemen Teknik Elektro, Fakultas Teknik Universitas Indonesia Kampus Baru UI, Depok 16424, Indonesia

Abstrak

Ada banyak teknologi *mobile broadband wireless access* (m-BWA) yang saat ini digunakan, agar bisa mencakup seluruh teknologi m-BWA yang ada dalam sebuah perangkat maka diperlukan teknologi *multiband*. Salah satu komponen penting yang mendukung perkembangan teknologi m-BWA adalah *bandpass filter* (BPF), yang berfungsi untuk memilah-milah dan mengisolasi *band* yang spesifik dari interferensi pada *transceiver radio frequency* (RF). Pada penelitian ini akan dirancang *quadband* BPF yang beroperasi pada frekuensi tengah 950 MHz dan 1,85 GHz untuk aplikasi GSM, 2,35 GHz untuk aplikasi WiMAX, dan 2,65 GHz untuk aplikasi LTE secara simultan. Rangkaian *quadband* BPF dibangun dan dikembangkan dari konsep *dualband* BPF dengan menambahkan sejumlah *cross coupling* pada *inductive coupling* BPF tersebut untuk menghasilkan zero pada frekuensi tertentu yang diharapkan menggunakan komponen *lumped*. BPF yang dirancang memiliki spesifikasi, *input return loss* (S₁₁) < -10 dB, *insertion loss* (S₂₁) > -3 dB, dan *voltage standing wave ratio* (*VSWR*) antara 1 – 2, dan *group delay* kurang dari 10 ns. Perancangan dilakukan menggunakan perangkat lunak *Advance Design System* (ADS) dan kemudian difabrikasi berbasis *printed circuit board* (PCB). Hasil simulasi BPF menunjukkan kinerja *quadband* BPF memenuhi kriteria perancangan sedangkan hasil fabrikasi mengalami pergeseran.

Kata kunci: quadband BPF, m-BWA, komponen lumped, insertion loss, return loss, VSWR, group delay.

Abstract

Nowadays, many technology of mobile broadband wireless access (m-BWA) are using by users, in order to develop all m-BWA technologies into one device, multiband technology is proposed. One of important component which support m-BWA technology is bandpass filter (BPF). BPF has function to enable band selecting in RF transceiver and isolate a specific band from interferers. In this research, a quadband BPF is design to operate at four specific center frequencies of 950 MHz and 1.85 GHz for GSM, 2.35 GHz for WiMAX, and 2.65 GHz for LTE applications, simultaneously. The quadband BPF circuit is designed based on dualband BPF by adding some cross coupling at inductive coupling BPF to produce zero at certain frequencies using lumped components. The design of filter must meet some requirements such as input return loss $(S_{11}) < -10$ dB, insertion loss $(S_{21}) > -3$ dB, and VSWR between 1 - 2 with group delay < 10 ns. The design is simulated with Advanced Design System (ADS) software and fabricated using printed circuit based (PCB). The simulation results show that the performances of proposed quadband BPF are satisfied to the design requirements, while the measurement results are shifted from the requirements.

Keywords: quadband BPF, m-BWA, lumped component, insertion loss, return loss, VSWR, group delay.

I. PENDAHULUAN

Saat ini ada banyak teknologi mobile broadband wireless access (m-BWA) yang digunakan seperti Global System for Mobile Communications (GSM), Wide-band Code Division Multiple Access (WCDMA), Worldwide Interoperability for Microwave Access (WiMAX), dan Long Term Evolution (LTE). Kemajuan teknologi m-BWA menarik minat para peneliti untuk mengembangkan radio frequency (RF) transceivers yang mampu bekerja pada beberapa pita frekuensi (multiband) secara bersamaan [1]-[6]. Teknologi GSM menggunakan frekuensi 900 MHz dan 1,8 GHz, WCDMA pada frekuensi 1.9 GHz dan 2,1 GHz, WiMAX pada frekuensi 2,3 GHz dan 3,3 GHz, serta LTE bekerja pada frekuensi 2,6 GHz. Semua teknologi m-BWA dimungkinkan dapat beroperasi pada satu perangkat untuk memberikan kemudahan bagi pengguna dan operator. Pada teknologi m-BWA, ukuran dan jumlah divais adalah pertimbangan penting dalam perancangan perangkat, saat ini divais SMD dengan ukuran yang lebih kecil dengan kehandalan tinggi banyak digunakan dalam perancangan perangkat m-BWA. Komponen *lumped* berupa induktor, kapasitor dan resistor dalam rangkaian *microwave* adalah komponen pasif dengan ukuran yang lebih kecil dari panjang gelombang operasi sehingga tidak ada pergeseran fasa yang besar antara terminal masukan dan keluaran [1].

Bandpass fiter (BPF) adalah komponen pada teknologi m-BWA yang berguna untuk memilih pita frekuensi pada RF *transceiver* dan mengisolasi pita frekuensi yang diinginkan dari sinyal yang diterima [7], [8]. Untuk memenuhi kebutuhan akan perangkat yang

^{*} Corresponding Author.

Email: gunawan@eng.ui.ac.id

Received: November 15, 2013; Revised: November 15, 2013

Accepted: Desember 23, 2013 Published: Desember 30, 2013

^{© 2013} PPET - LIPI

doi: 10.14203/jet.v13.47-54

bekerja pada multi-frekuensi, teknik *concurrent* banyak digunakan dalam membangun sistem transceiver m-BWA. Himanshu [1] dan Yong-Xin dkk. [2] menunjukkan penggunaan lumped komponen sebagai resonator untuk menghasilkan dualband BPF yang dapat bekerja dengan baik pada frekuensi 2,4 GHz dan 5,2 GHz untuk aplikasi Wi-Fi. Yong-Xin dkk. [2] memperkenalkan dualband BPFsebagai penggabungan dua singleband BPF. Kedua singleband BPF tersebut didesain ulang sehingga salah satu BPF mempunyai karakteristik lowpass sedangkan yang lainnya highpass, sehingga satu filter akan open pada passband band filter lainnya. Ukuran filter ini relatif besar dan rangkaiannya yang sangat kompleks. Himanshu [1] juga memperkenalkan dualband BPF yang berbeda dengan Yong-Xin dkk. [2], di mana filter didesain dengan komponen lumped yang tersusun lebih padat untuk menghasilkan respon dualband dengan kedua frekuensi tengah setiap *band* dapat dikontrol secara mandiri.

Pada penelitian ini akan dirancang *quadband* BPF yang dikembangkan dari konsep *dualband* BPFyang diusulkan oleh Himanshu [1], dengan menambahkan sejumlah *cross coupling* pada *inductive coupling* BPF tersebut untuk menghasilkan *zero* pada frekuensi tertentu yang diharapkan [9], [10]. Rangkaian *quadband* BPF dirancang dengan menggunakan komponen *lumped*, dengan teknik *concurrent multiband* yang bekerja pada frekuensi tengah 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz. Filter ini memiliki nilai *input return loss* (S₁₁) < -10 dB, *insertion loss* (S₂₁) > -3 dB, dan VSWR antara 1 – 2 dengan *group delay* < 10 ns.

Perancangan filter ini disimulasikan dengan menggunakan perangkat lunak Advanced Design System (ADS). Parameter-parameter filter yang akan dievaluasi meliputi frekuensi kerja, return loss, insertion loss, VSWR, bandwidth, dan group delay. Selain itu dilakukan juga pabrikasi dan hasilnya dibandingkan dengan hasil simulasi. Hasil akhir perancangan adalah rangkaian quadband BPF dengan menggunakan komponen lumped pada printed circuit board (PCB).

II. PERANCANGAN QUADBAND BPF

Spesifikasi *quadband* BPF yang dirancang dapat dilihat pada Tabel 1.

SPESIFIKASI QUADBAND BPF YANG DIRANCANG					
Parameter	Spesifikasi				
Aplikasi	GSM	GSM	WiMAX	LTE	
Frekuensi tengah (GHz)	0,95	1,85	2,35	2,65	
Bandwidth (MHz)	100	100	100	100	
Return Loss (dB)	< -10	< -10	< -10	< -10	
Insertion Loss (dB)	> -3	> -3	> -3	>-3	
VSWR	1 - 2	1 - 2	1 - 2	1 - 2	
Group Delay (ns)	< 10	< 10	< 10	< 10	

TABEL I

Quadband BPF yang dirancang dalam penelitian merupakan pengembangan dualband BPF yang diusulkan Himanshu [1] menggunakan pendekatan inductive coupling BPF dengan menambahkan sejumlah cross coupling pada inductive coupling BPF untuk menghasilkan zero pada frekuensi tertentu. Konfigurasi *dualband* BPF [1] yang digunakan sebagai dasar perancangan *quadband* BPFditunjukkan pada Gambar 1.

Gambar 1. Skematik Dualband BPF yang Diusulkan Himanshu [1].

Quadband BPFyang diusulkan dapat bekerja pada frekuensi tengah 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz. Seperti dijelaskan Himanshu [1], resonator paralel yang dibentuk oleh L_r dan C_r dengan kopling antar resonator L_t akan menghasilkan frekuensi resonansi pada pita frekuensi yang lebih rendah sebagai *passband* pertama. Dengan nilai yang sesuai, inductor, L_t , dapat pula digunakan untuk menghasilkan *passband* pada frekuensi yang lebih tinggi, sebagai *passband* kedua. Konsep ini digunakan untuk merancang BPF yang bekerja pada frekuensi tengah 950 MHz dan 2,35 GHz. Rangkaian *quadband* BPFyang bekerja pada frekuensi tengah 950 dan 2350 MHz dapat dilihat pada Gambar 2.

Gambar 2. Rangkaian *quadband* BPFpada frekuensi 950 MHz dan 2,35 GHz.

Dengan menggunakan pendekatan seperti yang dilakukan Fabricio dkk. [11] dan asumsi bahwa $L_1 = L_4$, $C_1 = C_3$, dan $L_2 = L3$ maka nilai impedansi rangkaian pada Gambar 1., Z_1 , Z_2 , Z_3 , dan Z_4 dapat dinyatakan sebagai

$$Z_{1} = Z_{4} = \frac{\frac{sL_{1}}{sC_{1}}}{sL_{1} + \frac{1}{sC_{1}}} = \frac{sL_{1}}{s^{2}L_{1}C_{1} + 1}$$
(1)

$$Z_{2} = Z_{3} = Z_{1} + sL_{2} = \frac{s^{3}L_{1}L_{2}C_{1} + s(L_{1} + L_{2})}{s^{2}L_{1}C_{1} + 1}$$
(2)

di mana Z_1 adalah impedansi L_1 dan C_1 , Z_2 adalah impedansi L_1 , L_2 , dan C_1 , Z_3 adalah impedansi L_3 , L_4 , dan C_3 , dan Z_4 adalah impedansi L_4 dan C_3 . Besarnya

impedansi total, Z950MHz, 2350MHz dinyatakan oleh

$$Z_{950MH_{2},2350MH_{2}} = \frac{1}{Z_{2}} + \frac{1}{Z_{3}} + \frac{1}{C2} = \frac{C_{2}Z_{2}}{2C_{2} + Z_{2}}$$
(3)
$$= \frac{s(s^{2}L_{1}L_{2}C_{1} + L_{1} + L_{2})}{s^{4}L_{1}L_{2}C_{1}C_{2} + s^{2}(L_{1}C_{2} + L_{2}C_{2} + 2L_{1}C_{1}) + 2}$$

Kondisi *short* terjadi apabila Z_{950MHz, 2350MHz} bernilai nol yaitu pada saat *zero* bernilai nol (pembilang pada pers (3) bernilai 0), sedangkan kondisi *open* terjadi apabila Z_{950MHz}, _{2350MHz} bernilai tak hingga yaitu ketika *pole* bernilai nol (penyebut pada Persamaan 3 bernilai 0). Rangkaian pada Gambar 1 memiliki sebuah *zero* yang akan beresonansi pada tiga frekuensi, yaitu ω_a , ω_b , dan ω_c . Untuk nilai ω_b dimisalkan resonansi saat *zero* bernilai nol, sehingga Persamaan 3 dapat dinyatakan sebagai

$$s(s^{2}L_{1}L_{2}C_{1} + L_{1} + L_{2}) = 0$$

$$s^{2} = -\frac{L_{1} + L_{2}}{L_{1}L_{2}C_{1}}$$
(4)

Bila $s = j\omega$, untuk kasus ω_b maka Persamaan 4 dapat dinyatakan sebagai

$$\omega_b^2 = -\frac{L_1 + L_2}{L_1 L_2 C_1} \tag{5}$$

Sedangkan ω_a dan ω_c beresonansi pada saat pole bernilai nol terjadi, di mana dari Persamaan 3 didapat

$$s^{4}L_{1}L_{2}C_{1}C_{2} + s^{2}(L_{1}C_{2} + L_{2}C_{2} + 2L_{1}C_{1}) + 2 = 0$$
 (6)

Dengan menggunakan persamaan kuadrat, maka didapatkan

$$\omega_{a}^{2} = \frac{\left(L_{1}C_{2} + L_{2}C_{2} + 2L_{1}C_{1}\right) - \sqrt{\left(L_{1}C_{2} + L_{2}C_{2} + 2L_{1}C_{1}\right)^{2} - 8L_{1}L_{2}C_{1}C_{2}}}{2L_{1}L_{2}C_{1}C_{2}} \quad (7)$$

$$\omega_{c}^{2} = \frac{\left(L_{1}C_{2} + L_{2}C_{2} + 2L_{1}C_{1}\right) + \sqrt{\left(L_{1}C_{2} + L_{2}C_{2} + 2L_{1}C_{1}\right)^{2} - 8L_{1}L_{2}C_{1}C_{2}}}{2L_{1}L_{2}C_{1}C_{2}}$$

Dengan persyaratan bahwa $\omega_a < \omega_b < \omega_c$, maka ω_a diatur sedemikian sehingga beresonansi pada frekuensi 950 MHz dan ω_c beresonansi pada frekuensi 2,35 GHz sedangkan ω_b diatur beresonansi pada frekuensi di antara 950 MHz dan 2,35 GHz. Hasil simulasi return loss S₁₁ yang menyatakan frekuensi resonansi untuk ω_a dan ω_c dapat ditunjukkan pada Gambar 3.

Hasil simulasi S_{11} dapat diperoleh dengan nilai komponen BPF yang digunakan, diberikan pada Tabel 2.

TABEL II Komponen BPF Untuk Frekuensi 950 MHz dan 2,35 GHz

Komponen	Nilai (nH)	Komponen	Nilai (pF)
L_1	0,76	C_1	15,6
L_2	0,80	C_2	26,7
L_3	0,80	C ₃	15,6
L_4	0,76		

Dari Gambar 3 terlihat bahwa frekuensi resonansi ω_b (m2 pada Gambar 3) dari nilai zero tidak mudah diatur untuk beresonansi pada frekuensi tertentu tanpa mempengaruhi frekuensi resonansi ω_a (m1 pada Gambar 3) dan ω_c (m3 pada Gambar 3). Tetapi bila diinginkan menggeser frekuensi resonansi ω_a dan ω_c tanpa mengganggu frekuensi resonansi ω_b , dapat dilakukan dengan mengubah nilai C₂. Jika ω_b diinginkan sebagai *passband* kedua yang bekerja pada frekuensi 1,85 GHz tanpa mempengaruhi ω_a dan ω_c , maka untuk mencapainya, konfigurasi rangkaian BPF yang digunakan terlihat pada Gambar 4.

Gambar 4. Rangkaian Quadband BPF pada Frekuensi 1,85 GHz.

Jika diasumsikan L1=L4, C1=C3, dan L2=L3 maka nilai impedansi total untuk beresonansi pada frekuensi 1,850 GHz pada dari rangkaian pada Gambar 3 dapat dinyatakan sebagai

$$Z_{1,85GHz} = \frac{s^2 \left(s^2 \left(4L_1 C_1 L_2 L_3 + 2L_1 L_2 L_5 C_4\right) + 4L_2 L_5 + L_1 L_5 + 2L_1 L_2\right)}{s^5 4C_1 C_4 L_1 L_2 L_5 + 2s^3 \left(L_2 L_5 C_4 + L_1 C_1 (L_5 + 2L_2)\right) + S(L_5 + 2L_2)}$$
(8)

Bila diharapkan resonansi pada frekuensi 1,85 GHz terjadi, maka dari Persamaan 8 didapat

$$\omega_{1,85GHz}^{2} = \frac{4L_{2}L_{5} + L_{1}L_{5} + 2L_{1}L_{2}}{4L_{1}C_{1}L_{2}L_{5} + 2L_{1}L_{2}L_{5}C_{4}}$$
(9)

Untuk membuat resonansi pada 1,85 GHz, maka dilakukan penggeseran frekuensi resonansi yang dihasilkan dari *zero* tersebut, dilakukan dengan penambahan induktor dan kapasitor sebagai *cross coupling* terhadap kopling utama. Di mana induktor digunakan untuk mengubah nilai *zero*. Penambahan *cross coupling* ini tidak memindahkan frekuensi resonansi yang dihasilkan dari *pole* karena *cross*

coupling ini hanya berfungsi untuk mengunci zero pada sumbu j ω (*real frequency*). Apabila induktor L₅ dan C₄ pada Gambar 4 diubah-ubah nilainya maka frekuensi resonansi yang dihasilkan dari zero akan bergeser sedangkan frekuensi resonansi lainnya tidak berubah. Demikian juga sebaliknya, apabila komponen yang sudah ada sebelum penambahan cross coupling ini diubah-ubah nilainya maka frekuensi resonansi dari zero tidak akan berubah karena cross coupling sudah mengunci frekuensi resonansi tersebut pada posisinya. BPF yang bekerja pada frekuensi tengah 950 MHz, 1,85 GHz dan 2,35 GHz dihasilkan dengan pemilihan nilai komponen L5 dan C4 yang sesuai, dengan sedikit penyesuaian pada nilai komponen yang terdapat pada Tabel 2 maka diperoleh nilai komponen seperti pada Tabel 3. Hasil simulasi S_{11} diperlihatkan oleh Gambar 5. untuk frekuensi 1,85 GHz.

TABEL III Komponen BPF untuk Frekuensi 1,85 GHz

Komponen	Nilai (nH)	Komponen	Nilai (pF)
L ₁	0,75	C1	15,5
L_2	0,75	C ₃	15,5
L ₃	0,85	C_4	3,71
L_4	0,82		
L ₅	3,14		

Passband ketiga dihasilkan dengan penambahan kapasitor di antara resonator paralel yang dibentuk oleh L_r dan C_r pada Gambar 4. Untuk mengontrol pergerakan zero yang dihasilkan pada quadband BPF dapat dilakukan dengan menambahkan *cross copling* lainnya menggunakan induktor maupun kapasitor di antara dua resonator tersebut [9], [10].

Gambar 5. Hasil Simulasi S11 pada Frekuensi 1,85 GHz.

Untuk realisasi *passband* keempat, dilakukan dengan memindahkan *zero* dari tak hingga ke frekuensi 2,65 GHz dengan menggunakan induktor L_6 yang dipasang secara seri terhadap *cross coupling* yang terdapat pada Gambar 4.Pada kondisi ini, induktor L_6 juga berfungsi sebagai *cross coupling* bersama-sama dengan induktor L_5 dan kapasitor C_4 . Konfigurasi rangkaian untuk memperoleh *passband* kedua pada 1,85

GHz dan *passband* keempat pada 2,65 GHz diperlihatkan pada Gambar 6.

Gambar 6. Rangkaian *Quadband* BPF pada Frekuensi 1,85 GHz dan 2,65 GHz.

Untuk menggeser frekuensi resonansi kedua menjadi 1,85 GHz dapat dilakukan dengan mengubahubah nilai L_5 dan C_4 sedangkan untuk menggeser frekuensi resonansi keempat menjadi 2,65 GHz dapat dilakukan dengan mengubah-ubah nilai L_6 tanpa menggeser frekuensi resonansi kedua secara signifikan. Hal ini bisa dicapai dengan mengatur L_5 , L_6 , dan C_4 mempunyai sifat impedansi yang berbeda pada kedua frekuensi tersebut. Untuk penelitian ini, L_5 , L_6 , dan C_4 diatur agar lebih bersifat kapasitif pada frekuensi 1,85 GHz dan lebih bersifat induktif pada frekuensi 2,65 GHz. Dengan pemilihan komponen yang sesuai seperti yang terdapat pada Tabel 4, dapat dihasilkan BPF yang bekerja pada frekuensi 1,85 GHz dan 2,65 GHz.

TABEL IV KOMPONEN BPF PADA FREKUENSI 1,85 GHZ DAN 2,65 GHZ Komponen Nilai (nH) Komponen Nilai (pF) 15,50 L1 0,75 C1 L2 0,85 C3 15,50 3,725 L3 0,82 C4 L4 0,75 L5 2,64 L6 2,64

Hasil simulasi S_{11} pada frekuensi 1,85 GHz dan 2,65 diperlihatkan oleh Gambar 7.

Gambar 7. Hasil Simulasi S11 pada Frekuensi 1,85 GHz dan 2,65 GHz.

Untuk realisasi quadband BPF dapat dilakukan dengan memasukkan nilai-nilai komponen yang terdapat

pada Tabel 3 dan Tabel 4.pada rangkaian *quadband* BPF yang terdapat pada Gambar 6., kapasitor C_5 dan C_6 berfungsi sebagai kopling antara *port* masukan dan *port* keluaran dengan *quadband* BPF dan sekaligus sebagai DC *block* dengan nilai 10 pF. Kapasitor ini tidak memberikan pengaruh yang signifikan terhadap frekuensi resonansi filter. Tabel 5 memperlihatkan nilai komponen untuk *quadband* BPF dari Gambar 6.

TABEL V Komponen BPE Untuk Keempat *Passband*

Komponen	Nilai (nH)	Komponen	Nilai (pF)
L1	0,75	C1	15,5
L2	0,85	C2	26,0
L3	0,82	C3	15,5
L4	0,75	C4	3,7
L5	2,74	C5	10,0
L6	2,57	C6	10,0

Hasil simulasi S_{11} untuk keempat *passband* diperlihatkan oleh Gambar 8.

Gambar 8. Hasil Simulasi S11 untuk Keempat Passband.

III. HASIL DAN ANALISA

A. Simulasi

1) Return Loss

Hasil simulasi output *return loss* (S_{22}) rangkaian *quadband* BPFdiperlihatkan pada Gambar 9. Hasil simulasi menunjukkan bahwa rangkaian *quadband* BPF mampu beroperasi pada empat frekuensi yang berbeda. Nilai output *return loss* yang kecil mengakibatkan transmissi power ke *quadband* BPF dari sumber berjalan lebih optimal. Pada Gambar 9 dapat dilihat bahwa S_{22} memiliki nilai yang yang mendekati nilai terendah pada frekuensi tengahnya, yaitu pada 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz. Dari hasil simulasi, dapat disimpulkan bahwa *quadband* BPF dapat bekerja pada keempat frekuensi yang diinginkan.

Gambar 9. Hasil Simulasi Output Return Loss (S22).

2) Insertion Loss (S₂₁)

Hasil simulasi *insertion* loss (S_{21}) rangkaian quadband BPF diperlihatkan pada Gambar 10. Hasil simulasi menunjukkan bahwa rangkaian quadband BPF mampu beroperasi pada empat frekuensi yang berbeda. Nilai *insertion* loss yang mendekati nol menunjukkan semakin kecil daya yang hilang akibat penyisipan filter di antara kedua *port*. Pada Gambar 10. dapat dilihat bahwa S21 memiliki nilai yang yang mendekati nol pada frekuensi tengahnya, yaitu pada 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz. Dari hasil simulasi tersebut, dapat disimpulkan bahwa *quadband* BPF dapat bekerja pada keempat frekuensi yang diinginkan.

Gambar 10. Hasil Simulasi Insertion Loss (S21).

Untuk *quadband* BPF ini, dengan menggunakan nilai *insertion loss* pada Gambar 3. lebih besar dari -3 dB, *bandwidth* yang diperoleh adalah sebesar 56 MHz dan 96 MHz masing-masing pada 950 dan 1800 MHz, 162 MHz pada 2,35 GHz, dan 127 MHz pada 2,65 GHz.

3) VSWR

Nilai VSWR masing-masing frekuensi telah mencapai kondisi yang diharapkan, yaitu memiliki nilai antara 1 – 2 pada semua frekuensi kerja *quadband* BPF tersebut. Dari Gambar 11. tampak bahwa hasil simulasi VSWR mendekati nilai 1 pada frekuensi tengah 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz.

Gambar 11. Hasil Simulasi VSWR.

4) Group Delay

Gambar 12. menunjukkan *group delay* yang terjadi pada keempat *passband* yang diinginkan, yaitu 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz. Pada 950 MHz terjadi *group delay* sebesar 5,627 ns, pada 1,85 GHz terjadi *group delay* sebesar 3,445 ns, pada 2,35 GHz terjadi *group delay* sebesar 2,420 ns, dan pada 2,65 GHz terjadi *group delay* sebesar 3,088 ns. Hal ini menunjukkan bahwa *group delay* yang terjadi kurang dari 10 ns. *Group delay* yang dihasilkan tidak akan menyebabkan perubahan fasa yang signifikan sehingga tidak menyebabkan terjadinya distorsi pada sinyal yang dilewatkan.

Gambar 12. Hasil Simulasi Group Delay.

B. Pabrikasi

Hasil pabrikasi *quadband* BPF yang dirancangd apat dilihat pada Gambar 13.

Gambar 13. Quadband BPF Hasil Pabrikasi.

1) Input Return Loss (S_{11})

Hasil simulasi *input return loss* S_{11} rangkaian *quadband* BPF tampak pada Gambar 14. Hasil pengukuran menunjukkan bahwa rangkaian *quadband* BPF hasil pabrikasi sebenarnya mampu beroperasi pada empat frekuensi yang berbeda, tetapi tidak beroperasi pada frekuensi kerja yang diinginkan.

2) Insertion Loss (S_{21})

Hasil pengukuran *insertion loss* (S_{21}) rangkaian *quadband* BPF tampak pada Gambar 15. Hasil menunjukkan bahwa rangkaian *quadband* BPF hasil pabrikasi tidak beroperasi pada empat frekuensi yang diharapkan. Di mana nilai *insertion loss* yang diharapkan berada di atas -3 dB tidak tercapai seperti yang diperlihatkan Gambar 15.

Gambar 15. Insertion Loss Hasil Fabrikasi.

3) VSWR

Dari Gambar 16 tampak bahwa hasil simulasi VSWR pada frekuensi yang diharapkan tidak tercapai. Nilai VSWR yang seharusnya berada di bawah 2 pada frekuensi kerja 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz belum terpenuhi.

Gambar 14. Input Return Loss Hasil Pabrikasi.

Gambar 16. VSWR Hasil Pabrikasi

Gambar 17. Group Delay Hasil Pabrikasi.

4) Group Delay

Gambar 17 menunjukkan *group delay* yang terjadi pada *quadband* BPF hasil pabrikasi. Seperti yang terlihat pada gambar tersebut *group delay* yang terjadi di bawah 10 ns sehingga tidak akan terjadi distorsi pada sinyal yang dilewatkan.

Hasil fabrikasi belum sesuai dengan kriteria perancangan dikarenakan antara lain adalah nilai komponen yang digunakan tidak sesuai dengan hasil perhitungan, fabrikasi PCB yang kurang presisi, dan proses penyolderan yang kurang baik.

KESIMPULAN

Quadband BPF yang dikembangkan dari konsep dualband BPF dengan menambahkan sejumlah cross

coupling pada inductive coupling BPF untuk menghasilkan zero pada frekuensi tertentu yang diharapkan telah berhasil dirancang dan dipabrikasi. Kinerja quadband BPF yang dinyatakan dengan insertion loss, return loss, VSWR, dan group delay disimulasikan, diukur, dan dibandingkan. Rangkaian quadband BPF dirancang menggunakan komponen lumped dengan teknik concurrent multiband yang bekerja pada frekuensi tengah 950 MHz, 1,85 GHz, 2,35 GHz, dan 2,65 GHz. Quadband BPF yang dirancang memiliki bandwidth sebesar 56 MHz dan 96 MHz masing-masing pada frekuensi 950 MHz dan 1,80 GHz, 162 MHz pada frekuensi 2,35 GHz, dan 127 MHz untuk frekuensi 2,65 GHz pada insertion loss > -3 dB. Quadband BPF ini memiliki nilai return loss S_{11} < -10 dB, *insertion loss* $S_{21} > -3$ dB, dan VSWR antara 1 - 2 dengan *group delay* kurang dari 10 ns untuk keempat frekuensi. Kinerja *quadband* BPF hasil pabrikasi menunjukkan belum sesuai dengan hasil simulasi dikarenakan oleh antara lain toleransi komponen yang tinggi, fabrikasi yang kurang presisi, dan proses penyolderan yang kurang baik.

UCAPAN TERIMA KASIH

Penelitian ini didanai oleh Hibah Riset Strategi Nasional Dikti Tahun 2013 dengan nomor kontrak No. 2502/H2.R12/HKAP.05.00/2013.

DAFTAR PUSTAKA

- [1] H. Joshi, "Multiband RF Bandpass Filter Design", Dissertation, Purdue University, Indiana, Mei, 2010.
- [2] Y. X. Guo, L.C. Ong, M. Y. W. Chia, dan B. Luo, "Dual-band bandpass filter in LTCC", *Microwave Symposium Digest*, 2005 *IEEE MTT-S International*, 2005, pp. 2219 - 2222.
- [3] M. Steer, Microwave and RF Design : A Systems Approach, North Carolina, USA: SciTech Publishing, Inc., 2010.

- [4] A. B. Fathoni, "Rancang Bangun Multiband dengan Folded Dual Cross Open Stub", Thesis, Universitas Indonesia, Depok, Indonesia, 2012.
- [5] H. Xie, L. He, P. Shen, J. Gan, L. Li, Y. Huang, L. Huang, and W. Zhang, "A novel dual-band power amplifier for wireless communication", *IEEE 2009 International Conference on Communication Software and Networks*, 2009, pp. 332 – 335.
- [6] C. W Sayre, Complete Wireless Design, 2nd ed., New York, USA: The McGraw-Hill Companies Inc., 2008.
- [7] I. Bahl, Lumped Elements for RF and Microwave Circuits, Boston, USA: Artech House, 2003.
- [8] D. M. Pozar, *Microwave Engineering Third Edition*, New Jersey, USA: John Wiley & Son, Inc., 2005
- [9] R. J. Wenzel, "Understanding transmission zero movement in cross-coupled filters". *Microwave Symposium Digest, 2003 IEEE MTT-S International*, 2003, pp. 1459 – 1462.
- [10] C. W. Tang, Y. C. Lin, and C. Y. Chen, "Realization of transmission zeros in combine filters using an auxiliary inductively coupled ground plane", *IEEE Transactions on Microwave Theory and Techniques*, vol. 51, pp. 2112 – 2118, October 2003.
- [11] F. G. S. Silva, R. N. de Lima, and R. C. S. Freire, "A design methodology for concurrent impedance matching networks based on multiresonant circuits", *New Circuits and Systems Conference (NEWCAS)*, 2011 IEEE 9th International, Jun 22-29, 2011, pp. 386 – 389.