Fabrication of Hybrid Polymer Solar Cells By Inverted Structure Based on P3HT:PCBM Active Layer

       Shobih Shobih, Rizky Abdillah, Erlyta Septa Rosa

Abstract


Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al). In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.

  http://dx.doi.org/10.14203/jet.v17.13-18

Keywords


inverted polymer solar cells; P3HT; PCBM; PEDOT:PSS; ZnO interlayer

Full Text:

  PDF

References


C. J. Brabec, “Organic photovoltaics: technology and market”, Solar Energy Materials and Solar Cells, vol. 83, iss. 2-3, pp. 273-292, 2004. Crossref

C. Deibel, V. Dyakonov, “Polymer–fullerene bulk heterojunction solar cells”, Reports on Progress in Physics, vol. 73, no. 9, pp. 096401, 2010. Crossref

F. C. Krebs, M. Jørgensena, K. Norrman, O. Hagemann, J. Alstrupa, T. D. Nielsena, J. Fyenbo, K. Larsen, and J. Kristensen, “A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration”, Solar Energy Materials and Solar Cells, vol. 93, iss. 4, pp. 422-44, 2009. Crossref

N. Espinosa, R. G. Valverde, A. Urbina, F. C. Krebs, ”A life cycle analysis of polymer solar cell modules prepared using rollto-roll methods under ambient conditions”, Solar Energy Materials and Solar Cells, vol. 95, iss. 5, pp. 1293-1302, 2011. Crossref

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science, vol. 270, iss. 5243, pp. 1789-1791, 1995. Crossref

Y. He, Y. F. Li,”Fullerene derivative acceptors for high performance polymer solar cells”, Physical Chemistry Chemical, vol. 13 pp. 1970-1983, 2011. Crossref

J. Hou, X. Guo, “Active layer materials for organic solar cells” in Organic Solar Cells, Green Energy and Technology, W. C. H. Choy, Ed., London: Springer-Verlag, 2013, p.17-42. Crossref

M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C.Hummelen, P. A. van Hal, R. A. J. Janssen, “Efficient methano[70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells”, Angewandte Chemie International Editon, vol. 42, pp. 3371-3375, 2003. Crossref

G. Li, V. Shrotriya, J. Huang, Y. Yao, Tommoriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Materials, vol. 4, pp. 864-868, 2005. Crossref

H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, “Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency”, Angewandte Chemie International Editon, vol. 50, pp. 2995-2998, 2011. Crossref

M. Jørgensen, K. Norrman, F.C. Krebs, “Stability/degradation of polymer solar cells”, Solar Energy Materials and Solar Cells, vol. 92, iss. 7, pp. 686-714, 2008. Crossref

S. J. Lee, B. S. Kim, J. Y. Kim, A. R. bin Mohd Yusoff, J. Jang, “Stable organic photovoltaic with PEDOT:PSS and MoOX mixture anode interfacial layer without encapsulation”, Organic Electronics, vol. 19, pp. 140-146, 2015. Crossref

K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, C.C. Chang, “Blocking reactions between indium-tin oxide and poly 3,4- ethylene dioxythiophene.:poly.styrene sulphonate with a selfassembly monolayer”, Applied Physic Letters, vol. 80, no. 15,pp. 2788-2790, 2002. Crossref

Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, G. Cao, “Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells”, Advanced Functional Materials, vol. 22, iss. 10, pp. 2194-2201, 2012. Crossref

Z. Ma, Z. Tang, E. Wang, M.R. Andersson, O. Inganäs, F. Zhang, “Influences of surface roughness of ZnO electron transport layer on the photovoltaic performance of organic inverted solar cells”, Journal of Physical Chemistry C, vol. 116, pp. 24462-24468, 2012. Crossref

P. Li, T. Jiu, G. Tang, G. Wang, J. Li, X. Li, J. Fang, “Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells”, ACS Applied Materials & Interfaces, pp. 18172-18179, 2014. Crossref

D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer fullerene composites”, Nanotechnology, vol. 15, pp. 1317-1323, 2004. Crossref

V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li, Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene): methanofullerene blend thin films”, Chemical Physics Letters, vol. 411, iss. 1-3, pp. 138-143, 2005. Crossref

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. de Boer, “Small bandgap polymers for organic solar cells (polymer material development in the last 5 years)”, Polymer Reviews, vol. 48, pp. 531-582, 2008. Crossref

Y. C. Huang, Y. C. Liao, S. S. Li, M. C. Wu, C. W. Chen, W. F. Su, “Study of the effect of annealing process on the performance

of P3HT/PCBM photovoltaic devices using scanning-probe microscopy”, Solar Energy Materials and Solar Cells, vol. 93, pp. 888-892, 2009. Crossref

J. T. Chen, C. S. Hsu, “Conjugated polymer nanostructures for organic solar cell applications”, Polymer Chemistry, vol. 2, pp. 2707-2722, 2011. Crossref

M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, P. W. M. Blom, “Effect of traps on the performance of bulk heterojunction organic solar cells”, Applied Physics Letters, vol. 91, pp. 263505, 2007. Crossref

Y. J. Noh, S. I. Na, S. S. Kim, “Inverted polymer solar cells including ZnO electron transport layer fabricated by facile spray

pyrolysis”, Solar Energy Materials and Solar Cells, vol. 117, pp.139-144, 2013. Crossref

G. Li, R. Zhu, Y. Yang, “Polymer solar cells”, Nature Photonics, vol. 6, pp. 153-161, 2012. Crossref


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Elektronika dan Telekomunikasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Powered by OJS | Design by ThemeOJS